首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antithrombin Northwick Park and antithrombin Glasgow are functionally variant antithrombins with impaired abilities to interact with thrombin. Thrombosis is associated with their inheritance. Both of the purified, reduced, and S-carboxymethylated variant antithrombins were treated with cyanogen bromide and the major pools of each containing the amino acid sequence Gly339-Met423 were isolated. Following treatment of these pools with trypsin, fast atom bombardment mass spectrometry identified tryptic peptides (found also in normal antithrombin treated in the same way) that corresponded to amino acid sequences Gly339-Lys370 and Val400-Met423. The tryptic peptides, corresponding to amino acid sequences Ala371-Arg393 and Ser394-Arg399 were present in both variant preparations in greatly reduced amounts compared to a normal antithrombin preparation. However, two novel tryptic peptides of molecular mass (M + H)+ 2976 and 2952 were identified in the digests of antithrombin Northwick Park and Glasgow, respectively. Further analyses of these novel tryptic peptides were carried out by V8 protease treatment and sequential Edman degradation coupled with mass spectrometric analysis of the shortened peptides. This established that these peptides comprised the amino acid sequence Ala371-Arg399, but with single amino acid substitutions at the reactive site, Arg393 replaced by Cys (in antithrombin Northwick Park) and by His (in antithrombin Glasgow).  相似文献   

2.
Antithrombin is a plasma protein inhibitor that can be grouped within a serine proteinase inhibitor superfamily. Antithrombin Pescara is a functional variant of antithrombin found in a family with a high incidence of thrombosis. Preliminary functional analysis has suggested that the abnormality resides in the reactive site rather than in the heparin binding domain of the molecule. Accordingly, we have isolated the variant from plasma using heparin-Sepharose chromatography, followed by chromatography upon thrombin-Sepharose to remove the normal antithrombin that is present (the propositus is heterozygous for the variant). The variant protein was reduced, S-carboxy-methylated, and fragmented with CNBr. A pool ("CNBr pool 4") containing the reactive site region was isolated by reverse-phase high performance liquid chromatography and sequentially treated with trypsin and V8 protease. Fast atom bombardment-mass spectrometric analysis of this subdigest identified a novel peptide of mass 1708. Four steps of Edman degradation together with further analysis by fast atom bombardment-mass spectroscopy identified the NH2-terminal sequence of this peptide as Ala-Ala-Ala-Ser. The mass of the novel peptide and its changing mass in response to Edman degradation are only compatible with its identity as Ala382-Arg399, with the reactive site Arg393 replaced by Pro. Using specific oligonucleotide hybridization, we demonstrated that the molecular defect of antithrombin Pescara is caused by a CGT to CCT mutation in codon 393. These findings may be of broad interest, as other members of the serine protease inhibitor superfamily contain arginine at their reactive sites and may be expected to undergo a similar mutation.  相似文献   

3.
1. A novel type of sperm-activating peptide named sperm-activating peptide type-V (SAP-V) was isolated from the egg-conditioned media (egg jelly) of the heart urchin Brissus agassizii and the primary structure of the peptide was determined by fast atom bombardment mass spectrometry as follows: Gly-Cys-Glu-Gly-Leu-Phe-His-Gly-Met-Gly-Asn-Cys. 2. SAP-V and [Met(O)9]SAP-V stimulated the respiration of B. agassizii spermatozoa with half-maximal concentrations of 0.5 and 0.3 nM, respectively. However, half-maximal stimulation of the sperm respiration required 40 nM of S-carboxymethylated SAP-V. 3. SAP-V induced significant increases in the cyclic AMP and cyclic GMP levels in B. agassizii spermatozoa in a concentration-dependent manner. 4. The addition of SAP-V to B. agassizii spermatozoa resulted in a mobility shift of a major sperm protein (mol. wt from 133,000 to 129,000) on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

4.
Two peptides exhibiting kinin activity in an isolated rat uterus assay were purified from pasteurized skim bovine milk. The amino acid sequence of the more prominent peptide was found to be that of bradykinin. Partially purified kinin preparations were also obtained from N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin digests of non-fat dry milk and insoluble lactalbumin. The application of fast atom bombardment/mass spectrometry permitted detection of the bradykinin protonated molecular ion in each of these samples. Collision-activated decomposition of the ion of m/z 1061 confirmed it to be the protonated molecular ion of bradykinin. Fast atom bombardment/mass spectrometry analysis further confirmed the occurrence of bradykinin in a pancreatic kallikrein digest of a partially purified bovine milk kininogen preparation. In apparent contrast with bovine plasma kininogens, the forms of kininogen which occur in milk include a high Mr kininogen (Mr greater than 68,000) and a low Mr kininogen (Mr 16,000-17,000). Kinin formation from the high Mr kininogen is catalyzed by porcine pancreatic kallikrein or trypsin.  相似文献   

5.
Hepatocyte receptors for antithrombin III-proteinase complexes   总被引:3,自引:0,他引:3  
The in vivo clearance of antithrombin III-proteinase complexes occurs via a specific and saturable pathway located on hepatocytes. We now report studies of the catabolism of antithrombin III-proteinase complexes in vitro using rat hepatocytes in primary culture. Antithrombin III-thrombin and trypsin complexes were prepared and purified to homogeneity. Ligand uptake by hepatocytes was concentration, temperature, and time dependent. Initial rate studies were performed to characterize the maximum rate of uptake, V, and apparent Michaelis constant Kapp. These studies yielded a V of 12.8 fmol/mg cell protein/min and a Kapp of 144 nM for antithrombin-trypsin complexes. Competition experiments with antithrombin III, antithrombin III-proteinase complexes, alpha 2-macroglobulin-methylamine, asialoorosomucoid and the neoglycoproteins, fucosyl-bovine serum albumin (BSA), N-acetylglucosaminyl-BSA, and mannosyl-BSA indicated that only antithrombin III-proteinase complexes were recognized by the hepatocyte receptor. Uptake studies were performed at 37 degrees C with 125I-antithrombin III-trypsin and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with autoradiography. These studies demonstrate time-dependent uptake and degradation of the ligand to low molecular weight peptides. In addition, there was a time-dependent accumulation of a high molecular weight complex of ligand and a cellular protein. This complex disappeared when gels were performed under reducing conditions.  相似文献   

6.
Antithrombin requires allosteric activation by heparin for efficient inhibition of its target protease, factor Xa. A pentasaccharide sequence found in heparin activates antithrombin by inducing conformational changes that affect the reactive center of the inhibitor resulting in optimal recognition by factor Xa. The mechanism of transmission of the activating conformational change from the heparin-binding region to the reactive center loop remains unresolved. To investigate the role of helix D elongation in the allosteric activation of antithrombin, we substituted a proline residue for Lys(133). Heparin binding affinity was reduced by 25-fold for the proline variant compared with the control, and a significant decrease in the associated intrinsic fluorescence enhancement was also observed. Rapid kinetic studies revealed that the main reason for the reduced affinity for heparin was an increase in the rate of the reverse conformational change step. The pentasaccharide-accelerated rate of factor Xa inhibition for the proline variant was 10-fold lower than control, demonstrating that the proline variant cannot be fully activated toward factor Xa. We conclude that helix D elongation is critical for the full conversion of antithrombin to its high affinity, activated state, and we propose a mechanism to explain how helix D elongation is coupled to allosteric activation.  相似文献   

7.
Cell surfaces of metastatic 13762 ascites rat mammary adenocarcinoma cells are covered with a sialomucin complex composed of the high Mr sialomucin ASGP-1 (approximately 600,000) and a concanavalin A-binding, integral membrane glycoprotein ASGP-2 (120,000). Antibodies prepared against ASGP-2 and deglycosylated ASGP-1 react on immunoblots of ascites cells or their isolated microvilli with the Mr = 120,000 species and the high Mr sialomucin, respectively. No cross-reactivity was observed. Under complex dissociating conditions, anti-ASGP-2 immunoprecipitated primarily components of Mr = 120,000 and about 400,000 from lysates of cells labeled for 1 h with mannose, glucosamine, and threonine. Under similar conditions, anti-ASGP-1 immunoprecipitated the Mr = 400,000 component and a second major labeled component of about 330,000. Pulse-chase labeling with 35S-labeled amino acids followed by immunoprecipitation with anti-ASGP-2 indicated a precursor-product relationship for the Mr = 400,000 component, designated pSMC-1 (precursor, sialomucin complex), and ASGP-2. Similar pulse-chase analyses of threonine-labeled cells using anti-ASGP-1 showed equivalent amounts of immunoprecipitated pSMC-1 and pSMC-2, both of which disappeared with kinetics similar to those observed for pSMC-1 immunoprecipitated with anti-ASGP-2. A precursor-product relationship of both pSMC-1 and pSMC-2 to ASGP-1 was suggested by combined precipitations with anti-ASGP-1 and peanut agglutinin, which precipitates ASGP-1 specifically. Immunoblot and lectin blot analyses indicated that pSMC-1 and pSMC-2 from the immunoprecipitates bind anti-ASGP-2, anti-ASGP-1, and concanavalin A. Moreover, these three components can also be labeled with mannose; the mannose was removed from 30-min pulse-labeled anti-ASGP-2 immunoprecipitates by incubation with endo-beta-N-acetylglucosaminidase H, indicating the presence of only high mannose N-linked oligosaccharides in pSMC-1. One-dimensional peptide maps of 35S-labeled pSMC-1 and Mr = 120,000 ASGP-2 showed several corresponding bands. These results indicate that both ASGP-1 and ASGP-2 can be synthesized from a common high Mr precursor. We propose that complex is formed from pSMC-1 by proteolytic cleavage to yield Mr = 120,000 ASGP-2 plus the precursor to ASGP-1 early in the transit pathway from the endoplasmic reticulum to the cell surface.  相似文献   

8.
Recombinant plasmids were constructed that direct the synthesis of human antithrombin III in baker's yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. The signal sequence of antithrombin III was recognized by both yeast species, and antithrombin III was secreted into the medium. When the signal sequence was replaced by a sequence of ten arbitrary amino acids, the product expressed from such a construct stayed inside the cell. Antithrombin III was glycosylated by the baker's and fission yeast and was immunologically identical to antithrombin III isolated from human plasma. Antithrombin III isolated from the culture media of recombinant yeasts was biologically active, as could be shown by progressive inhibitor activity and heparin cofactor activity.  相似文献   

9.
We have isolated four novel oligosaccharides with the sialyl-Lea structure from human milk using a monoclonal antibody, MSW 113. These oligosaccharides were purified by affinity chromatography on a column of the immobilized monoclonal antibody and by high-performance liquid chromatography. The results of structural analyses, i.e., 500-MHz 1H NMR spectroscopy, fast atom bombardment mass spectrometry, and binding to specific anticarbohydrate antibodies, are consistent with the following structures. (formula; see text)  相似文献   

10.
Four calcium compounds containing uronic acids (D(+)-galacturonic and D(+)-glucuronic) in L:M ratio = 2 and 3 were isolated by applying novel (except for one complex) synthetic procedures. The compounds were characterized by elemental analysis, spectroscopic methods (diffuse reflectance and absorption UV-visible, IR, FIR), mass spectrometry, fast atom bombardment (FAB), thermal decomposition, thermogravimetry/derivative thermogravimetry (TG/DTG) data and differential scanning calorimetric studies (DSC). Two modes of water binding in the complexes, i.e., hydration and coordination-like, were established. Computer-aided analysis has shown that further investigations are needed in order to determine the applicability of calcium uronates as calcium carriers.  相似文献   

11.
Sixteen monophosphoryl Lipid A (MLA) homologs obtained from the lipopolysaccharides of Salmonella minnesota Re595 were separated by preparative thin layer chromatography into eight fractions. The components of these fractions were analyzed directly (or as structural analogs) and characterized by mass spectrometry. Molecular weights were determined by negative and positive ion fast atom bombardment mass spectrometry and component structures were assigned following a study of fragmentation and metastable ion kinetic energy spectrometry. One fraction (TLC-8) contained a single heptaacyl MLA of Mr = 1,954, a structure previously elucidated (Qureshi, N., Mascagni, P., Ribi, E., and Takayama, K. (1985) J. Biol. Chem. 260, 5271-5278). The remaining seven fractions contained 15 additional MLAs with decreasing acylation. Two of these components have been previously reported in S. minnesota and Salmonella typhimurium. Three of the eight TLC fractions (TLC-8, -7, -6) were found to be biologically active toward human platelets inducing their aggregation and secretion of serotonin. All tested fractions induced varying degrees of phosphorylation of a platelet protein of Mr = 47,000 (P47) reflecting protein kinase C activation (Grabarek, J., Her, G. R., Reinhold, V. N., and Hawiger, J. J. (1990) J. Biol. Chem. 265, 8117-8121).  相似文献   

12.
Purification of the catalyst of adenylate cyclase   总被引:12,自引:0,他引:12  
The catalytic moiety of hormone-sensitive adenylate cyclase has been purified from bovine brain. It is isolated largely without its guanine nucleotide-binding regulatory protein, Gs, by affinity chromatography on 7-O-hemisuccinyldeacetylforskolin-agarose. It appears to be a single polypeptide which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent Mr of approximately 120,000. When subjected to electrophoresis on gradient (5-10%) sodium dodecyl sulfate-polyacrylamide gels, it displays a larger apparent Mr of 150,000. The adenylate cyclase activity of the preparation can be stimulated by the addition of Gs, forskolin, or calcium-calmodulin. The preparation has been reconstituted with purified beta-adrenergic receptors and Gs to form a hormone-stimulated adenylate cyclase system (May, D., Ross, E.M., Gilman, A.G., and Smigel, M.D. (1985) J. Biol. Chem. 260, 15829-15833). In contrast to its stimulation by Gs, inhibition by the alpha subunits of Gi and Go, G proteins known to be coupled to inhibitory receptors (Sternweis, P., and Florio, V. (1985) J. Biol. Chem. 260, 3477-3483), is not seen. Preparations of adenylate cyclase show varying degrees of inhibition by added G protein beta . gamma subunit. This inhibition can be explained as reflecting a variable, small (under 5%) contamination of the preparation by Gs alpha which would be deactivated by complexing with the added beta . gamma subunit.  相似文献   

13.
The molecular interactions between components of the heparin-catalyzed antithrombin III/thrombin reaction were investigated by light scattering. When heparin was added to antithrombin III, the molecular weight increased to a maximum and then decreased to that of a 1:1 (antithrombin III X heparin) complex. The initial molecular weights at low heparin to antithrombin III ratios were consistent with the formation of a 2:1 (antithrombin III X heparin) complex in which only one antithrombin III molecule had undergone the conformational change measured by protein fluorescence enhancement. The peak molecular weight never reached that of a complete 2:1 complex. This behavior was observed for bovine and human antithrombin III in the presence of both unfractionated heparin and high molecular weight-high affinity heparin. Pentosane polysulfate also caused some multiple associations. Bovine antithrombin III and thrombin formed a 1:1 complex that underwent further aggregation within minutes, while the human proteins did not aggregate on this time scale after forming the 1:1 complex. In the presence of stoichiometric amounts of heparin, the bovine proteins formed an initial complex of Mr = 230,000 (corresponding to a dimer of heparin-antithrombin III-thrombin) which underwent further aggregation. The human proteins, however, formed a 1:1 (antithrombin III X thrombin) initial complex in the presence of heparin, followed by aggregation. These interactions of thrombin and antithrombin with heparin suggest complex interactions that could relate to heparin function.  相似文献   

14.
Antithrombin III Basel is a hereditary abnormal antithrombin with normal progressive inhibition activity (normal reactive site) and reduced heparin cofactor activity (impaired heparin binding site). Structures of antithrombin III Basel and normal antithrombin III isolated from the same patient were compared by peptide mapping using the dimethylaminoazobenzene isothiocyanate precolumn derivatization technique. Of the approximately 50 tryptic peptides of normal and abnormal antithrombin III, one peptide comprising residues 40-46 had a different retention time in reversed-phase high performance liquid chromatography. The amino acid sequence of the peptide from antithrombin III Basel had a single substitution of Pro (normal) by Leu (abnormal) at position 41. This substitution is close to an Arg (residue 47) and a Trp (residue 49) which have previously been shown to be critical for heparin binding by antithrombin III. Although additional amino acid substitutions in antithrombin III Basel cannot be ruled out, this Pro-Leu replacement could cause a conformational change by increasing both the helical structure and the hydrophobicity around residue 41. These data suggest that: (i) the heparin binding site of antithrombin III encompasses the region containing residues 41, 47, and 49; and (ii) the impaired heparin cofactor activity of antithrombin III Basel is likely due to a conformational change of the heparin binding site induced by the Pro-Leu substitution at position 41.  相似文献   

15.
X J Sun  J Y Chang 《Biochemistry》1990,29(38):8957-8962
Arginyl residues of human antithrombin III have been implicated to involve in the heparin binding site [Jorgensen, A. M., Borders, C. L., & Fish, W. W. (1985) Biochem, J. 231, 59-63]. We have performed chemical modification of antithrombin with (p-hydroxyphenyl)glyoxal (HPG) in order to determine the locations of these arginine residues. Antithrombin was modified with 12 mM HPG in the absence and presence of heparin (2-fold by weight to antithrombin). In the absence of heparin, about 3-4 mol of arginines/mol of antithrombin were modified within 60 min, and the modification led to the loss of 95% of the inhibitor's heparin cofactor activity as well as heparin-induced fluorescence enhancement and 50% of its progressive inhibitory activity. In the presence of heparin, the extent of modification was diminished by 30% and modified antithrombin retained approximately 70% of its heparin cofactor activity. Peptide mapping and subsequent sequence analysis revealed that selective HPG modification occurred at Arg129 and Arg145 and that their modifications were protected upon binding of heparin to antithrombin. We conclude that Arg129 and Arg145 are situated within the heparin binding site of human antithrombin III.  相似文献   

16.
The glycosylphosphatidylinositol anchor (GPI) from the membrane form variant surface glycoprotein (mfVSG) of Trypanosoma brucei brucei was isolated and identified after radioactive labeling with [3H]myristic acid, by immunostaining on HPTLC with a polyclonal antibody directed against mfVSG and by negative ion laser desorption and fast atom bombardment mass spectrometry of the GPI anchor before and after peracetylation. For the production of monoclonal antibodies the purified GPI molecule was incorporated into liposomes and injected intrasplenically in BALB/c mice. After fusion with the myeloma cell line X63-Ag 8.653 hybridoma cells were cloned by single cell cloning. The secreted antibodies were characterized by ELISA, Ouchterlony immunodiffusion, and Western blot and used in first immunofluorescent studies.  相似文献   

17.
Heparin and heparin oligosaccharides prepared by nitrous acid depolymerization were fractionated by affinity chromatography on immobilized antithrombin and by gel chromatography. The anticoagulant activities of high affinity heparin of Mr greater than or equal to 7,800 could be readily neutralized by the plasma protein histidine-rich glycoprotein (see also Lijnen, H.R., Hoylaerts, M., and Collen, D. (1983) J. Biol. Chem. 258, 3803-3808), whereas oligosaccharides falling below 18 saccharide units (Mr 5,400) became increasingly resistant to neutralization. An octasaccharide with characteristic marked ability to accelerate the inactivation of Factor Xa by antithrombin retained greater than 50% of its activity even at a histidine-rich glycoprotein/oligosaccharide molar ratio of 500:1. Histidine-rich glycoprotein, like the platelet-derived heparin neutralizing protein platelet factor 4 (Lane, D.A., Denton, J., Flynn, A.M., Thunberg, L. and Lindahl, U. (1984) Biochem J. 218, 725-732), therefore requires interaction with saccharide sequences in addition to the antithrombin-binding pentasaccharide of heparin in order to efficiently express its antiheparin activity. Heparan sulfate isolated from pig intestinal mucosa (HS I, Mr approximately 20,000) and from human aorta (HS II, Mr approximately 40,000) exhibited anti-Factor Xa activities of 180 and 20 units/micromol [corrected], respectively. A fraction corresponding to about 5% of HS I bound with high affinity to immobilized antithrombin and contained all of the anticoagulant activity of the starting material. While these heparan sulfates were readily neutralized by platelet factor 4, they were relatively resistant to neutralization by histidine-rich glycoprotein, although complete neutralization could be attained in the presence of molar excess of this protein. These findings may be of importance in relation (a) to the functional role of endogenous anticoagulant polysaccharides at the vascular wall and (b) to clinical situations in which heparin or heparin-related compounds are administered as exogenous anticoagulants.  相似文献   

18.
The glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase (EC 3.1.1.7) is composed of a glycan linked through a glucosamine residue to an inositol phospholipid that is resistant to the action of phosphatidylinositol-specific phospholipase C. Deamination cleavage of the glucosamine with nitrous acid released the inositol phospholipid which was purified by high performance liquid chromatography. Analysis by fast atom bombardment mass spectrometry with negative ion monitoring and by the complementary technique of collision-induced dissociation revealed molecular and daughter ions that indicated a plasmanylinositol with a palmitoyl group on an inositol hydroxyl. The intact membrane anchor was released from reductively methylated human erythrocyte acetylcholinesterase by proteolysis with papain or Pronase, deacylated by base hydrolysis, and purified by high performance liquid chromatography. Positive and negative ion fast atom bombardment mass spectrometry of the major products isolated by high performance liquid chromatography indicated the following structure for the complete glycoinositol phospholipid anchor. (formula; see text) Methylation of free amino groups by reduction with deuterium instead of hydrogen permitted determination of the number of free amino groups in individual fragment ions as further confirmation of structural assignments. The structure of the glycan portion of the human erythrocyte acetylcholinesterase membrane anchor appears to be similar to that described for Trypanosome brucei variant surface glycoprotein MITat 1.4 (variant 117) (Ferguson, M.A.J., Homans, S.W., Dwek, R.A., and Rademacher, T.W. (1988) Science 239, 753-759) except for the absence of a galactose antenna and the presence of a phosphorylethanolamine on the hexose adjacent to glucosamine.  相似文献   

19.
Two unique low molecular weight (531) compounds with both digoxin-like immunoreactivity and Na, K-ATPase inhibitory properties have been isolated from human plasma. One of these, digoxin-like substance 2, (DLIS-2), was studied by fast atom bombardment mass spectrometry and collisionally activated dissociation mass spectrometry/mass spectrometry. The fragment patterns were interpreted as being derived from a lysophosphatidyl serine containing a novel 19:4 fatty acid side chain. The molecular formula C25H42O9NP is consistent with these observations.  相似文献   

20.
Three acidic unsaponifiable lipid fractions were isolated by chromatographic methods from sandfly vector stages (promastigotes) of a protozoan parasite of man, Leishmania mexicana mexicana, cultured in vitro. Fast atom bombardment mass spectrometry, fast atom bombardment collision induced tandem mass spectrometry and metabolic labeling were used to characterize these lipids as di-O-alkylphosphatidyl-inositols, lyso-1-O-alkylphosphatidylinositols and inositol phosphosphingolipids. Molecular species of the dialkyl forms, new to natural product biochemistry, had a 20:0 substituent and either 17:1 or 18:1. The monoalkyl forms had either 17:0 or 18:0. The predominant ceramide had the 16:1 base and the lesser component the 16:0 base. In both, the N-acyl group was 18:0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号