首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.  相似文献   

2.
Abstract: To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1β with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1β was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N G-monomethyl- l -arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of BCl-2 and up-regulation of Bax protein levels.  相似文献   

3.
Cytotoxic effects of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) are considered to be one of the major causes of inflammatory diseases. On the other hand, protective effects of NO on toxic insults-induced cellular damage/apoptosis have been demonstrated recently. Ultraviolet B (UVB)-induced apoptosis of epidermal keratinocytes leads to skin inflammation and photoageing. However, it has not been elucidated what kind of effects NO has on UVB-induced keratinocyte apoptosis. Thus, in the present study, we investigated the problem and demonstrated that NO from NO donor suppressed UVB-induced apoptosis of murine keratinocytes. In addition, NO significantly suppressed activities of caspase 3, caspase 8 and caspase 9 that had been upregulated by UVB radiation. NO also suppressed p53 expression that had been upregulated by UVB radiation and upregulated Bcl-2 expression that had been downregulated by UVB radiation. These findings suggested that NO might suppress UVB-induced keratinocyte apoptosis by regulating apoptotic signaling cascades in p53, Bcl-2, caspase3, caspase 8 and caspase 9.  相似文献   

4.
This study examined the role of nitric oxide (NO) in cytokine-induced apoptosis in adult cardiac fibroblasts (CFbs). In cultured adult rat CFbs, IL-1beta (5 ng/ml), but not interferon-gamma (10 ng/ml) or tumor necrosis factor-alpha (10 ng/ml), induced inducible NO synthase (iNOS) expression and NO production that was associated with an increase in caspase-3 activity and apoptotic cell death. Apoptotic frequency was reduced by the iNOS inhibitor S-methylisothiourea (3 x 10(-5) M). Apoptosis in response to IL-1beta was attenuated by the caspase-3 inhibitor [Z-Asp-Glu-Val-Asp-fluoromethyl ketone (Z-DVED-FMK)] but not by inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). IL-1beta-induced CFb apoptosis was associated with an increase in p53 and Bax protein expression with no changes in Bcl-2 or Bcl-x(L). Nuclear condensation and fragmentation occurred when isolated nuclei were exposed to an NO donor [Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate) 10(-5) M], an effect that was not blocked by the peroxynitrite scavenger Mn(III)tetrakis(4-benzoic acid) porphyrin chloride. Moreover, Mn(III)tetrakis(4-benzoic acid) porphyrin chloride attenuated but did not eliminate IL-1beta-induced CFb apoptosis, indicating that the proapoptotic effect of NO can occur independently of its conversion to peroxynitrite. Our results demonstrate that IL-1beta-induced iNOS expression can trigger NO-dependent apoptosis in adult CFbs, which appears to result from DNA damage and may be mediated by a p53-dependent apoptotic pathway.  相似文献   

5.
李艳 《动物学杂志》2013,48(1):102-108
为探讨急性力竭运动后小鼠(Mus musculus)肾细胞凋亡水平的时相性变化及牛磺酸对肾的保护作用,将56只雄性小鼠随机分为对照组、力竭运动组(分为运动后即刻组、12h组、24 h组和48 h组)及牛磺酸运动组(分为12h组和24 h组),每小组8只,一次性力竭游泳运动后检测肾细胞凋亡水平、Bcl-2和Bax蛋白表达、一氧化氮(NO)含量及结构型一氧化氮合酶(cNOS)、诱导型一氧化氮合酶(iNOS)活性的变化.结果显示,力竭运动后各组小鼠肾细胞凋亡水平呈先升高后下降的趋势,其中运动后24 h组的凋亡水平达峰值(P<0.05).与对照组相比,运动各组Bax表达均显著增强(P<0.05).除运动后即刻组外,运动各组Bcl-2表达显著减弱(P<0.05).各组Bax/Bcl-2比值显著升高,并在运动后24 h达峰值(P<0.01),后出现下降趋势.小鼠力竭游泳后24 h和48 h肾组织NO含量显著高于对照组(P<0.05),同时iNOS活性升高(P<0.01),cNOS活性无显著性变化.相比同时刻运动组,牛磺酸运动组小鼠肾细胞凋亡水平、Bax表达及Bax/Bcl-2比值、iNOS活性显著降低(P<0.05),Bcl-2表达显著升高(P<0.05).以上结果表明,急性力竭运动可导致肾细胞凋亡的发生,iNOS、Bax、Bcl-2水平及Bax/Bcl-2比值可能在肾细胞凋亡的发生过程中发挥重要的介导作用.牛磺酸可通过调控iNOS活性及Bax/Bcl-2比值,抑制急性力竭运动后小鼠肾细胞凋亡的发生.  相似文献   

6.
In this study, we evaluated the molecular mechanisms involved in morphine-induced macrophage apoptosis. Both morphine and TGF-beta promoted P38 mitogen-activated protein kinase (MAPK) phosphorylation, and this phosphorylation was inhibited by SB 202190 as well as by SB 203580. Anti-TGF-beta Ab as well as naltrexone (an opiate receptor antagonist) inhibited morphine-induced macrophage P38 MAPK phosphorylation. Anti-TGF-beta Ab also attenuated morphine-induced p53 as well as inducible NO synthase expression; in contrast, N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, inhibited morphine-induced P38 MAPK phosphorylation and Bax expression. Morphine also enhanced the expression of both Fas and Fas ligand (FasL), whereas anti-FasL Ab prevented morphine-induced macrophage apoptosis. Moreover, naltrexone inhibited morphine-induced FasL expression. In addition, macrophages either deficient in FasL or lacking p53 showed resistance to the effect of morphine. Inhibitors of both caspase-8 and caspase-9 partially prevented the apoptotic effect of morphine on macrophages. In addition, caspase-3 inhibitor prevented morphine-induced macrophage apoptosis. These findings suggest that morphine-induced macrophage apoptosis proceeds through opiate receptors via P38 MAPK phosphorylation. Both TGF-beta and inducible NO synthase play an important role in morphine-induced downstream signaling, which seems to activate proteins involved in both extrinsic (Fas and FasL) and intrinsic (p53 and Bax) cell death pathways.  相似文献   

7.
Lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) stimulate macrophages to produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) and activate stress signaling cascades including the c-jun-N-terminal kinase (JNK) pathway. These events trigger an apoptotic cascade that ultimately results in death. Since JNK regulates pro-apoptotic and anti-apoptotic Bcl-2 family members, the role of NO in LPS/IFN-γ-induced activation of JNK and its effects on the Bcl-2 family was examined in RAW 264.7 macrophage-like cells. Inhibition of JNK by siRNA verified a role for JNK in LPS/IFN-γ-induced apoptosis. Suppression of NO production by a pharmacologic agent, i.e. iNOS inhibitor L-NIL, altered the kinetics of JNK activation by LPS/IFN-γ. Examination of mitochondrial and nuclear compartments of RAW 264.7 cells demonstrated NO-dependent activation of mitochondrial JNK by LPS/IFN-γ, but NO-independent, cytokine-induced phosphorylation of Bim. NO did not affect phosphorylation, but did inhibit Bax phosphorylation. These results suggest a novel mechanism of LPS/IFN-γ-induced apoptosis in macrophages involving NO-independent phosphorylation of Bim and NO-dependent dephosphorylation of Bax.  相似文献   

8.
Protein A (PA) of Staphylococcus aureus has been demonstrated to possess anti-tumor activity against a wide variety of tumors. In the current study we endeavored to obtain a mechanistic insight into PA-mediated Ehrlich's ascites carcinoma (EAC) killing. Our results indicate that PA stimulates generation of nitric oxide (NO) from murine peritoneal macrophages. Nitric oxide in turn induces cytotoxic damage to the tumor cells. Analysis of the morphological features and cell cycle phase distribution pattern of nuclear DNA revealed an induction of apoptosis (appearance of sub-G0/G1 population) in EAC after PA treatment. We have further elaborated the alterations in the expressions of the proto-oncoproteins p53 and Bax, together with a change in the ratio of Bcl-2/Bax in the treated tumor cells, which favor apoptosis. PA-induced apoptosis and changes in the expression of oncoproteins in the tumor cells was prevented by the suppression of NO release by the addition of L-NAME, the competitive NOS inhibitor, suggesting a possible mechanism by which PA exerts its anti-tumor activities involving nitric oxide through the alteration in the expressions of pro-apoptotic proteins.  相似文献   

9.
瞬时受体电位香草酸亚型1 (transient receptor potential vanilloid 1, TRPV1)在心肌缺血激活后可传导心绞痛信号和释放P物质(substance P, SP).SP是速激肽家族成员之一,主要通过结合并激活神经激肽1 (neurokinin 1,NK1)受体发挥作用. TRPV1和SP在缺血性心脏病中对心功能的恢复和重塑有一定保护作用,但对心肌梗死后凋亡的作用及具体机制尚不明确.本研究用TRPV1基因敲除(TRPV1-/- )小鼠和野生型(wide type, WT)小鼠建立心肌梗死模型,并外源性给予SP和NK1受体拮抗剂RP67580,用TTC染色法观察梗死的面积,TUNEL法检测心肌细胞凋亡指数,Western印迹方法检测caspase-3、Bcl-2、Bax、p53的蛋白表达.结果发现,心肌梗死24 h后,TRPV1-/-小鼠比WT小鼠梗死面积更大,凋亡指数和caspase-3活性更高,Bcl-2/Bax和p53蛋白表达更低. SP预处理可以明显缩小TRPV1-/-小鼠梗死面积,降低凋亡指数、caspase-3活性和升高Bcl-2/Bax比值,而在WT小鼠中改善不明显.外源性给予RP67580,阻断SP与NK1受体结合后,与相应对照组相比,WT小鼠梗死面积和凋亡指数更大,caspase-3蛋白表达更高,Bcl-2/Bax比值更低;TRPV1-/-小鼠与相应对照组比较,凋亡指数和caspase-3表达升高,Bcl-2/Bax比值降低.研究结果表明,SP可能介导了TRPV1在急性心肌梗死后凋亡中的保护作用.  相似文献   

10.
Bone unloading results in osteocyte apoptosis, which attracts osteoclasts leading to bone loss. Loading of bone drives fluid flow over osteocytes which respond by releasing signaling molecules, like nitric oxide (NO), that inhibit osteocyte apoptosis and alter osteoblast and osteoclast activity thereby preventing bone loss. However, which apoptosis-related genes are modulated by loading is unknown. We studied apoptosis-related gene expression in response to pulsating fluid flow (PFF) in osteocytes, osteoblasts, and fibroblasts, and whether this is mediated by loading-induced NO production. PFF (0.7 ± 0.3 Pa, 5 Hz, 1 h) upregulated Bcl-2 and downregulated caspase-3 expression in osteocytes. l-NAME attenuated this effect. In osteocytes PFF did not affect p53 and c-Jun, but l-NAME upregulated c-Jun expression. In osteoblasts and fibroblasts PFF upregulated c-Jun, but not Bcl-2, caspase-3, and p53 expression. This suggests that PFF inhibits osteocyte apoptosis via alterations in Bcl-2 and caspase-3 gene expression, which is at least partially regulated by NO.  相似文献   

11.
Hyperhomocysteinemia is believed to induce endothelial dysfunction and promote atherosclerosis; however, the pathogenic mechanism has not been clearly elucidated. In this study, we examined the molecular mechanism by which homocysteine (HCy) causes endothelial cell apoptosis and by which nitric oxide (NO) affects HCy-induced apoptosis. Our data demonstrated that HCy caused caspase-dependent apoptosis in cultured human umbilical vein endothelial cells, as determined by cell viability, nuclear condensation, and caspase-3 activation and activity. These apoptotic characteristics were correlated with reactive oxygen species (ROS) production, lipid peroxidation, p53 and Noxa expression, and mitochondrial cytochrome c release following HCy treatment. HCy also induced p53 and Noxa expression and apoptosis in endothelial cells from wild type mice but not in the p53-deficient cells. The NO donor S-nitroso-N-acetylpenicillamine, adenoviral transfer of inducible NO synthase gene, and antioxidants (alpha-tocopherol and superoxide dismutase plus catalase) but not oxidized SNAP, 8-Br-cGMP, nitrite, and nitrate, suppressed ROS production, p53-dependent Noxa expression, and apoptosis induced by HCy. The cytotoxic effect of HCy was decreased by small interfering RNA-mediated suppression of Noxa expression, indicating that Noxa up-regulation plays an important role in HCy-induced endothelial cell apoptosis. Overexpression of inducible NO synthase increased the formation of S-nitroso-HCy, which was inhibited by the NO synthase inhibitor N-monomethyl-l-arginine. Moreover, S-nitroso-HCy did not increase ROS generation, p53-dependent Noxa expression, and apoptosis. These results suggest that up-regulation of p53-dependent Noxa expression may play an important role in the pathogenesis of atherosclerosis induced by HCy and that an increase in vascular NO production may prevent HCy-induced endothelial dysfunction by S-nitrosylation.  相似文献   

12.
Although the issue of estrogen replacement therapy on cardiovascular health is debatable, it has presumable benefits for endothelial function in postmenopausal women. However, the fear of breast cancer has intimidated women contemplating estrogen treatment and limited its long-term application. An effective alternative remedy not associated with breast carcinoma is in serious demand. This study was designed to examine the effect of phytoestrogen alpha-zearalanol (alpha-ZAL) and 17beta-estradiol (E2) on nitric oxide (NO) and endothelin (ET)-1 levels, apoptosis, and apoptotic enzymes in human umbilical vein endothelial cells (HUVEC). HUVEC cells were challenged for 24 h with homocysteine (10-3 M), an independent risk factor for a variety of vascular diseases, in the presence of alpha-ZAL or E2 (10-9 to 10-6 M). Release of NO and ET-1 were measured with enzyme immunoassay. Apoptosis was evaluated by fluorescence-activated cell sorter analysis. Expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Bax, and Bcl-2 were determined using Western blot. NOS activity was evaluated with 3H-arginine to 3H-citrulline conversion. Our results indicated that Hcy significantly reduced NO production, NOS activity, enhanced ET-1/NO ratio and apoptosis, upregulated iNOS, Bax, and downregulated eNOS, Bcl-2 expression. These effects were significantly attenuated by alpha-ZAL and E2. ZAL displayed a similar potency compared with E2 in antagonizing Hcy-induced effects. In summary, these results suggested that alpha-ZAL may effectively preserve Hcy-induced decrease in NO, increase in ET-1/NO ratio and apoptosis, which contributes to protective effects of phytoestrogens on endothelial function.  相似文献   

13.
14.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

15.
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01?μM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1?day after irradiation and enhanced survival at 10?days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.  相似文献   

16.
The sustained overproduction of nitric oxide (NO) observed in inflammatory conditions can contribute to cell demise by affecting apoptosis. Nitration of tyrosine residues occurs in a range of diseases involving macrophage activation. Since NO induces apoptosis in monocytes/macrophages, we tested the hypothesis that nitration of specific proteins could result in apoptotic cell death. The peroxynitrite generator SIN-1 promoted apoptosis in monocytes based on oligonucleosomal DNA fragmentation, caspase-3 and -9 activation, Bcl-2 depletion and accumulation of Bax and p53 proteins. We also found that the signaling pathway triggered by SIN-1 was initiated through tyrosine kinase and Rac activation and resulted in increased JNK and p38 activities. Among the tyrosine-nitrated proteins, Rac and Lyn were identified. Using specific inhibitors for different signaling and effector molecules involved in the apoptotic process we demonstrate that NO, via protein-nitration, could play an important role in controlling the inflammatory response by regulation of monocyte homeostasis.  相似文献   

17.
18.
Arginase II catalyzes the conversion of arginine to urea and ornithine in many extrahepatic tissues. We investigated the protective role of arginase II on lipopolysaccharide-mediated apoptosis in the macrophage cells. Adenoviral gene transfer of full length of arginase II was performed in the murine macrophage cell line RAW264.7. The role of arginase II was investigated with cell viability, cytoplasmic histone-associated DNA fragmentation assay, arginase activity, nitric oxide production, and Western blot analysis. Arginase II is localized in mitochondria of macrophage cells, and the expression of arginase II was increased by lipopolysaccharide (LPS). LPS significantly increased cell death which was inhibited by AMT, a specific inducible nitric oxide synthase (iNOS) inhibitor. In contrast, LPS-induced cell death and nitric oxide production were increased by 2-boronoethyl-L-cysteine, a specific inhibitor of arginase. Adenoviral overexpression of arginase II significantly inhibited LPS-induced cell death and cytoplasmic histone-associated DNA fragmentation. LPS-induced iNOS expression and poly ADP-ribose polymerase cleavage were significantly suppressed by arginase II overexpression. Furthermore, arginase II overexpression resulted in a decrease in the Bax protein level and the reverse induction of Bcl-2 protein. Our data demonstrated that inhibition of NO production by arginase II may be due to arginine depletion as well as iNOS suppression though its reaction products. Moreover, arginase II plays a protective role of LPS-induced apoptosis in RAW264.7 cells.  相似文献   

19.
A variety of toxic and modulating events induced by UVA exposure are described to cause cell death via apoptosis. Recently, we found that UV irradiation of human skin leads to inducible nitric-oxide synthase (iNOS) expression in keratinocytes and endothelial cells (ECs). We have now searched for the role of iNOS expression and nitric oxide (NO) synthesis in UVA-induced apoptosis as detected by DNA-specific fluorochrome labeling and in DNA fragmentation visualized by in situ nick translation in ECs. Activation with proinflammatory cytokines 24 h before UVA exposure leading to iNOS expression and endogenous NO synthesis fully protects ECs from the onset of apoptosis. This protection was completely abolished in the presence of the iNOS inhibitor L-N5-(1-iminoethyl)-ornithine (0.25 mM). Additionally, preincubation of cells with the NO donor (Z)-1-[N(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-i um-1, 2-diolate at concentrations from 10 to 1000 microM as an exogenous NO-generating source before UVA irradiation led to a dose-dependent inhibition of both DNA strand breaks and apoptosis. In search of the molecular mechanism responsible for the protective effect, we find that protection from UVA-induced apoptosis is tightly correlated with NO-mediated increases in Bcl-2 expression and a concomitant inhibition of UVA-induced overexpression of Bax protein. In conclusion, we present evidence for a protective role of iNOS-derived NO in skin biology, because NO either endogenously produced or exogenously applied fully protects against UVA-induced cell damage and death. We also show that the NO-mediated expression modulation of proteins of the Bcl-2 family, an event upstream of caspase activation, appears to be the molecular mechanism underlying this protection.  相似文献   

20.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号