首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The current model for reverse cholesterol transport proposes that HDL transports excess cholesterol derived primarily from peripheral cells to the liver for removal. However, recent studies in ABCA1 transgenic mice suggest that the liver itself may be a major source of HDL cholesterol (HDL-C). To directly investigate the hepatic contribution to plasma HDL-C levels, we generated an adenovirus (rABCA1-GFP-AdV) that targets expression of mouse ABCA1-GFP in vivo to the liver. Compared with mice injected with control AdV, infusion of rABCA1-GFP-AdV into C57Bl/6 mice resulted in increased expression of mouse ABCA1 mRNA and protein in the liver. ApoA-I-dependent cholesterol efflux was increased 2.6-fold in primary hepatocytes isolated 1 day after rABCA1-GFP-AdV infusion. Hepatic ABCA1 expression in C57Bl/6 mice (n = 15) raised baseline levels of TC, PL, FC, HDL-C, apoE, and apoA-I by 150-300% (P < 0.05 all). ABCA1 expression led to significant compensatory changes in expression of genes that increase hepatic cholesterol, including HMG-CoA reductase (3.5-fold), LDLr (2.1-fold), and LRP (5-fold) in the liver. These combined results demonstrate that ABCA1 plays a key role in hepatic cholesterol efflux, inducing pathways that modulate cholesterol homeostasis in the liver, and establish the liver as a major source of plasma HDL-C.  相似文献   

3.
Niacin is a widely used lipid-regulating agent in dyslipidemic patients. Previously, we have shown that niacin inhibits triacylglycerol synthesis. In this report, using HepG2 cells, we have examined the effect of niacin on the mRNA expression and microsomal activity of diacylglycerol acyltransferase 1 and 2 (DGAT1 and DGAT2), the last committed but distinctly different enzymes for triglyceride synthesis. Addition of niacin to the DGAT assay reaction mixture dose-dependently (0-3 mM) inhibited DGAT activity by 35-50%, and the IC(50) was found to be 0.1 mM. Enzyme kinetic studies showed apparent K(m) values of 8.3 microM and 100 microM using [(14)C]oleoyl-CoA and sn-1,2-dioleoylglycerol as substrates, respectively. A decrease in apparent V(max) was observed with niacin, whereas the apparent K(m) remained constant. A Lineweaver-Burk plot of DGAT inhibition by niacin showed a noncompetitive type of inhibition. Niacin selectively inhibited DGAT2 but not DGAT1 activity. Niacin inhibited overt DGAT activity. Niacin had no effect on the expression of DGAT1 and DGAT2 mRNA. These data suggest that niacin directly and noncompetitively inhibits DGAT2 but not DGAT1, resulting in decreased triglyceride synthesis and hepatic atherogenic lipoprotein secretion, thus indicating a major target site for its mechanism of action.  相似文献   

4.
Plasma high density lipoprotein (HDL)-cholesterol levels are inversely correlated to the risk of atherosclerotic cardiovascular diseases. Reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which HDL particles play a crucial role to carry cholesterol derived from peripheral tissues to the liver. Recently, ATP-binding cassette transporters (ABCA1, ABCG1) and scavenger receptor (SR-BI) have been identified as important membrane receptors to generate HDL by removing cholesterol from foam cells. Adiponectin (APN) secreted from adipocytes is one of the important molecules to inhibit the development of atherosclerosis. Epidemiological studies have revealed a positive correlation between plasma HDL-cholesterol and APN concentrations in humans, although its mechanism has not been clarified. Therefore, in the present study, we investigated the role of APN on RCT, in particular, cellular cholesterol efflux from human monocyte-derived and APN-knockout (APN-KO) mice macrophages. APN up-regulated the expression of ABCA1 in human macrophages, respectively. ApoA-1-mediated cholesterol efflux from macrophages was also increased by APN treatment. Furthermore, the mRNA expression of LXRα and PPARγ was increased by APN. In APN-KO mice, the expression of ABCA1, LXRα, PPARγ, and apoA-I-mediated cholesterol efflux was decreased compared with wild-type mice. In summary, APN might protect against atherosclerosis by increasing apoA-I-mediated cholesterol efflux from macrophages through ABCA1-dependent pathway by the activation of LXRα and PPARγ.  相似文献   

5.
Using a sensitive real time fluorescent PCR assay, ABCA1 mRNA levels were induced by approximately 50-70-fold following 8Br-cAMP treatment of the RAW264 murine macrophage cell line, concomitant with the induction of cholesterol efflux to apoAI and HDL. A stably transfected ABCA1 antisense cDNA cell line was created, which led to approximately 50-70% reductions in ABCA1 mRNA levels in basal and 8Br-cAMP-treated cells, and diminished to the same extent the 8Br-cAMP-mediated efflux of cholesterol to apolipoprotein AI and HDL. These data demonstrate that ABCA1 is necessary for the cAMP-induced lipid efflux to both apoAI and HDL.  相似文献   

6.
Niacin is an effective agent for raising HDL, but its cellular target sites are largely unknown. We examined effects of niacin on the surface expression of ATP synthase beta chain, a newly described HDL/apolipoprotein A-I (apoA-I) receptor for HDL endocytosis, in HepG2 cells. A significant amount of immunodetectable beta chain was observed on the surface of HepG2 cells, which was competitively displaced by apoA-I. Niacin treatment reduced the surface expression of beta chain in HepG2 cells by approximately 27%, and decreased (125)I-labeled HDL uptake up to approximately 35%. However, nicotinamide, a niacin metabolite that does not have clinical lipid effects, exhibited weaker inhibition on the beta chain cell surface expression, and failed to show inhibitory action on (125)I-labeled HDL uptake. Furthermore, anti-beta chain antibody significantly reduced (125)I-labeled HDL uptake and abolished the inhibitory effect of niacin. Niacin did not change beta chain mRNA expression. These data suggest that niacin inhibits cell surface expression of the ATP synthase beta chain, leading to reduced hepatic removal of HDL protein, thus implicating a potential cellular target for niacin action to raise HDL.  相似文献   

7.
Recent studies have demonstrated that the ATP-binding cassette transporter A1 (ABCA1) facilitates the efflux of phospholipids and cholesterol to apoprotein acceptors, leading to the synthesis of HDL. The purpose of this study was to determine the changes in the lipoprotein fractions in Abca1-deficient mice and study the mechanisms responsible for the low levels of HDL when ABCA1 is absent. Plasma phospholipid concentration was decreased by more than 75%, mostly due to a reduction of phosphatidylcholine (PC) in HDL. Abca1(-/-) HDL represents less than 2% of wild-type levels and is smaller and enriched in phospholipids (11.2-fold more than HDL from controls). Compared to wild-type littermates, Abca1(-/-) HDL had a 4-fold increase in PC, whereas lysophosphatidylcholine (LPC) (125-fold), sphingomyelin (SPH) (49-fold), and phosphatidylethanolamine (PE) (18-fold) showed even higher increases. As a consequence, the ratios of LPC/PC, SPH/PC, PE/PC, and phosphatidylinositol + phosphatidylserine (PI+PS)/PC were all much higher in HDL from Abca1(-/-), compared to wild-type HDL. Plasma phospholipid transfer protein (PLTP) and lecithin cholesterol acyltransferase (LCAT) activities were decreased by more than 80%, suggesting that the maturation of HDL is affected. To test this hypothesis, plasma from Abca1(-/-) mice was incubated with CHO cells that are known to express high levels of ABCA1 with the intent of restoring the flux of phospholipid and cholesterol onto apoAI. Compared to native plasma, no change in maturation of HDL was observed. In contrast, a 220% increase in the formation of mature HDL was observed when ABCA1 function and LCAT activities were restored. Taken together, these observations suggest that ABCA1 is necessary for the adequate lipidation of apoAI, which enables the interaction with LCAT and subsequent maturation.  相似文献   

8.
9.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

10.
The identification of ABCA1 as a key transporter responsible for cellular lipid efflux has led to considerable interest in defining its role in cholesterol metabolism and atherosclerosis. In this study, the effect of overexpressing ABCA1 in the liver of LDLr-KO mice was investigated. Compared with LDLr-KO mice, ABCA1-Tg x LDLr-KO (ABCA1-Tg) mice had significantly increased plasma cholesterol levels, mostly because of a 2.8-fold increase in cholesterol associated with a large pool of apoB-lipoproteins. ApoB synthesis was unchanged but the catabolism of (125)I-apoB-VLDL and -LDL were significantly delayed, accounting for the 1.35-fold increase in plasma apoB levels in ABCA1-Tg mice. We also found rapid in vivo transfer of free cholesterol from HDL to apoB-lipoproteins in ABCA1-Tg mice, associated with a significant 2.7-fold increase in the LCAT-derived cholesteryl linoleate content found primarily in apoB-lipoproteins. ABCA1-Tg mice had 1.4-fold increased hepatic cholesterol concentrations, leading to a compensatory 71% decrease in de novo hepatic cholesterol synthesis, as well as enhanced biliary cholesterol, and bile acid secretion. CAV-1, CYP2b10, and ABCG1 were significantly induced in ABCA1-overexpressing livers; however, no differences were observed in the hepatic expression of CYP7alpha1, CYP27alpha1, or ABCG5/G8 between ABCA1-Tg and control mice. As expected from the pro-atherogenic plasma lipid profile, aortic atherosclerosis was increased 10-fold in ABCA1-Tg mice. In summary, hepatic overexpression of ABCA1 in LDLr-KO mice leads to: 1) expansion of the pro-atherogenic apoB-lipoprotein cholesterol pool size via enhanced transfer of HDL-cholesterol to apoB-lipoproteins and delayed catabolism of cholesterol-enriched apoB-lipoproteins; 2) increased cholesterol concentration in the liver, resulting in up-regulated hepatobiliary sterol secretion; and 3) significantly enhanced aortic atherosclerotic lesions.  相似文献   

11.
12.
Two ATP-binding cassette transporter proteins, ABCA1 and ABCG1, may mediate an active efflux of cellular cholesterol and phospholipids. They are ubiquitously expressed and are subject to regulation by cholesterol loading or by treatment with agents that activate the nuclear hormone receptor LXR. Earlier studies in both primates and non-primates reported that treatment with endotoxin (bacterial lipopolysaccharide, LPS) reduces plasma levels of HDL cholesterol. To determine if such HDL reduction correlates with a change in ABCA1 or ABCG1 expression, their expressions were measured in THP-1 monocytes and mice treated with LPS. LPS treatment leads to a rapid, dose-dependent increase of ABCA1 but not ABCG1 mRNA expression. Analysis of mouse livers showed that LPS treatment decreases expression of CYP7A, another target gene of LXR. When THP-1 cells were transfected with the ABCA1 promoter construct (-928 to +101 bp), promoter activity was significantly increased by treatment of 22(R)-hydroxycholesterol but not by LPS. Together, these studies show that LPS regulates ABCA1 expression through an LXR-independent mechanism. Further studies showed that treatment with Rhodobacter sphaeroiders LPS, an LPS antagonist, or PD169316, a specific p38 MAP kinase inhibitor, prevented the induction of ABCA1 by LPS. Therefore, this suggests that both transport of LPS from the plasma membrane to an intracellular site and activation of p38 MAP kinase are involved in the LPS-mediated induction of ABCA1.  相似文献   

13.
The objective of the present study was to investigate the involvement of key players in reverse cholesterol/24(S)OH-cholesterol transport in primary porcine brain capillary endothelial cells (pBCEC) that constitute the BBB. We identified that, in addition to scavenger receptor class B, type I (SR-BI), pBCEC express ABCA1 and apolipoprotein A-I (apoA-I) mRNA and protein. Studies on the regulation of ABCA1 by the liver X receptor agonist 24(S)OH-cholesterol revealed increased ABCA1 expression and apoA-I-dependent [3H]cholesterol efflux from pBCEC. In unpolarized pBCEC, high density lipoprotein, subclass 3 (HDL3)-dependent [3H]cholesterol efflux, was unaffected by 24(S)OH-cholesterol treatment but was enhanced 5-fold in SR-BI overexpressing pBCEC. Efflux of cellular 24(S)-[3H]OH-cholesterol was highly efficient, independent of ABCA1, and correlated with SR-BI expression. Polarized pBCEC were cultured on porous membrane filters that allow separate access to the apical and the basolateral compartment. Addition of cholesterol acceptors to the apical compartment resulted in preferential [3H]cholesterol efflux to the basolateral compartment. HDL3 was a better promoter of basolateral [3H]cholesterol efflux than lipid-free apoA-I. Basolateral pretreatment with 24(S)OH-cholesterol enhanced apoA-I-dependent basolateral cholesterol efflux up to 2-fold along with the induction of ABCA1 at the basolateral membrane. Secretion of apoA-I also occurred preferentially to the basolateral compartment, where the majority of apoA-I was recovered in an HDL-like density range. In contrast, 24(S)-[3H]OH-cholesterol was mobilized efficiently to the apical compartment of the in vitro BBB by HDL3, low density lipoprotein, and serum. These results suggest the existence of an autoregulatory mechanism for removal of potentially neurotoxic 24(S)OH-cholesterol. In conclusion, the apoA-I/ABCA1- and HDL/SR-BI-dependent pathways modulate polarized sterol mobilization at the BBB.  相似文献   

14.
The LXR nuclear receptors are intracellular sensors of cholesterol excess and are activated by various oxysterols. LXRs have been shown to regulate multiple genes of lipid metabolism, including ABCA1 (formerly known as ABC1). ABCA1 is a lipid pump that effluxes cholesterol and phospholipid out of cells. ABCA1 deficiency causes extremely low high density lipoprotein (HDL) levels, demonstrating the importance of ABCA1 in the formation of HDL. The present work shows that the acetyl-podocarpic dimer (APD) is a potent, selective agonist for both LXRalpha (NR1H3) and LXRbeta (NR1H2). In transient transactivation assays, APD was approximately 1000-fold more potent, and yielded approximately 6-fold greater maximal stimulation, than the widely used LXR agonist 22-(R)-hydroxycholesterol. APD induced ABCA1 mRNA levels, and increased efflux of both cholesterol and phospholipid, from multiple cell types. Gas chromatography-mass spectrometry measurements demonstrated that APD stimulated efflux of endogenous cholesterol, eliminating any possible artifacts of cholesterol labeling. For both mRNA induction and stimulation of cholesterol efflux, APD was found to be more effective than was cholesterol loading. Taken together, these data show that APD is a more effective LXR agonist than endogenous oxysterols. LXR agonists may therefore be useful for the prevention and treatment of atherosclerosis, especially in the context of low HDL levels.  相似文献   

15.
16.
ATP binding cassette transporter A1 (ABCA1) is a widely expressed lipid transporter essential for the generation of HDL. ABCA1 is particularly abundant in the liver, suggesting that the liver may play a major role in HDL homeostasis. To determine how hepatic ABCA1 affects plasma HDL cholesterol levels, we treated mice with an adenovirus (Ad)-expressing human ABCA1 under the control of the cytomegalovirus promoter. Treated mice showed a dose-dependent increase in hepatic ABCA1 protein, ranging from 1.2-fold to 8.3-fold using doses from 5 x 108 to 1.5 x 109 pfu, with maximal expression observed on Day 3 posttreatment. A selective increase in HDL cholesterol occurred at Day 3 in mice treated with 5 x 108 pfu Ad-ABCA1, but higher doses did not further elevate HDL cholesterol levels. In contrast, total cholesterol, triglycerides, phospholipids, non-HDL cholesterol, and apolipoprotein B levels all increased in a dose-dependent manner, suggesting that excessive overexpression of hepatic ABCA1 in the absence of its normal regulatory sequences altered total lipid homeostasis. At comparable expression levels, bacterial artificial chromosome transgenic mice, which express ABCA1 under the control of its endogenous regulatory sequences, showed a greater and more specific increase in HDL cholesterol than Ad-ABCA1-treated mice. Our results suggest that appropriate regulation of ABCA1 is critical for a selective increase in HDL cholesterol levels.  相似文献   

17.
Extremely low concentrations of high density lipoprotein (HDL)-cholesterol and apolipoprotein (apo) AI are features of Tangier disease caused by autosomal recessive mutations in ATP-binding cassette transporter A1 (ABCA1). Less deleterious, but dominantly inherited mutations cause HDL deficiency. We investigated causes of severe HDL deficiency in a 42-year-old female with progressive coronary disease. ApoAI-mediated efflux of cholesterol from the proband's fibroblasts was less than 10% of normal and nucleotide sequencing revealed inheritance of two novel mutations in ABCAI, V1704D and L1379F. ABCA1 mRNA was approximately 3-fold higher in the proband's cells than in control cells; preincubation with cholesterol increased it 5-fold in control and 8-fold in the proband's cells, but similar amounts of ABCA1 protein were present in control and mutant cells. When transiently transfected into HEK293 cells, confocal microscopy revealed that both mutant proteins were retained in the endoplasmic reticulum, while wild-type ABCA1 was located at the plasma membrane. Severe HDL deficiency in the proband was caused by two novel autosomal recessive mutations in ABCA1, one (V1704D) predicted to lie in a transmembrane segment and the other (L1379F) in a large extracellular loop. Both mutations prevent normal trafficking of ABCA1, thereby explaining their inability to mediate apoA1-dependent lipid efflux.  相似文献   

18.
《Free radical research》2013,47(12):1462-1472
Abstract

In our in vitro study, we analyzed the effects of incubation of J774A.1 macrophages with reduced glutathione (GSH) and quercetin on the extent of cellular cholesterol efflux by high-density lipoprotein (HDL) or apolipoprotein A1 (apoA1). This combination was the most potent one among other exogenous and endogenous antioxidant combinations, since it significantly increased the extent of HDL-mediated cholesterol efflux from macrophages by 47% versus control cells, whereas quercetin (20 μM) or GSH (200 μM) alone increased it by only 37% or 17%, respectively. Similarly, apoA1-mediated cholesterol efflux was increased by 11% or 22% in quercetin or quercetin + GSH-treated cells, respectively, versus control cells. These stimulatory effects were noted only after 20 h of cell incubation. The combination of quercetin + GSH demonstrated high scavenging capacity of free radicals versus quercetin or GSH alone. In addition, quercetin + GSH significantly decreased macrophage oxidative stress as measured by the scavenging capacity of free radicals in the cells, the formation of reactive oxygen species, and the levels of cellular glutathione and lipid peroxides. There was no significant effect of quercetin + GSH on cellular HDL binding, on ATP-binding cassette A1 (ABCA1) activity, or on ABCG1 messenger RNA (mRNA) levels.

In contrast, mRNA levels for ABCA1 and peroxisome proliferator-activated receptor alpha (PPARα) were both significantly increased by 89% and 93%, respectively, in quercetin + GSH-treated cells versus control cells. Quercetin alone increased the mRNA levels for ABCA1 or PPARα by 42% or 77%, respectively, whereas GSH alone increased it by 22% or 28%, respectively. Mass spectra analysis revealed that oxidized quercetin reacts with GSH to form a new adduct product. We thus conclude that the stimulatory effects of quercetin + GSH on apoA1- or HDL-mediated macrophage cholesterol efflux are related to the ability of GSH to preserve quercetin in its reduced form.  相似文献   

19.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   

20.
ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-beta-cyclodextrin (MbetaCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MbetaCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MbetaCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号