首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we evaluate the naturally acquired antibody response to the Plasmodium vivax apical membrane antigen 1 (PvAMA-1), a leading vaccine candidate against malaria. The gene encoding the PvAMA-1 ectodomain region (amino acids 43-487) was cloned by PCR using genomic DNA from a Brazilian individual with patent P. vivax infection. The predicted amino acid sequence displayed a high degree of identity (97.3%) with a previously published sequence from the P. vivax Salvador strain. A recombinant protein representing the PvAMA-1 ectodomain was expressed in Escherichia coli and refolded. By ELISA, this recombinant protein reacted with 85 and 48.5% of the IgG or IgM antibodies, respectively, from Brazilian individuals with patent P. vivax malaria. IgG1 was the predominant subclass of IgG. The frequency of response increased according to the number of malaria episodes, reaching 100% in individuals in their fourth malaria episode. The high degree of recognition of PvAMA-1 by human antibodies was confirmed using a second recombinant protein expressed in Pichia pastoris (PV66/AMA-1). The observation that recognition of the bacterial recombinant PvAMA-1 was only slightly lower than that of the highly immunogenic 19kDa C-terminal domain of the P. vivax Merozoite Surface Protein-1 was also important. DNA sequencing of the PvAMA-1 variable domain from 20 Brazilian isolates confirmed the limited polymorphism of PvAMA-1 suggested by serological analysis. In conclusion, we provide evidence that PvAMA-1 is highly immunogenic during natural infection in humans and displays limited polymorphism in Brazil. Based on these observations, we conclude that PvAMA-1 merits further immunological studies as a vaccine candidate against P. vivax malaria.  相似文献   

2.
Bora H  Garg S  Sen P  Kumar D  Kaur P  Khan RH  Sharma YD 《PloS one》2011,6(1):e16294
Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s) of the parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24 (9.5%) tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of tryptophan residues. The recombinant PvTRAg33.5 showed predominantly α helical structure and alpha helix to beta sheet transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50°C at neutral pH. Its secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These structural changes in the protein might occur during its translocation to interact with other proteins at its final destination for biological function such as erythrocyte invasion.  相似文献   

3.
Need for malaria vaccine necessitates the characterization of potential antigens of the Plasmodium parasite. Recently, we have identified several Plasmodium vivax tryptophan-rich antigens (PvTRAgs). Here, we describe the immunological characterization of hitherto undescribed two such antigens PvTRAg 35.2 and PvTRAg 80.6 which are respective homologue of Plasmodium falciparum merozoite associated tryptophan-rich antigen (PfMaTrA) and P. falciparum tryptophan and threonine rich antigen (PfTryThrA) involved in erythrocyte invasion. Each of the pvtrag genes is comprised of two exons where exon 2 encodes for major part of the protein. PvTRAg 35.2 and PvTRAg 80.6 showed 97.06% and 94.12% (n = 34) seropositivity rates, and 92.3% (n = 13) and 100% (n = 29) lymphoproliferative responses, respectively, among P. vivax exposed individuals. Geometric mean values of IL-12, IFN-γ, TNF-α, IL-4 and IL-10 in PBMC culture supernatants of P. vivax exposed individuals were 182.02, 60.3, 62.84, 196.01 and 177.17 pg/ml against PvTRAg 35.2 and 185.27, 58.15, 64.56, 142.01 and 157.2 pg/ml against PvTRAg 80.6 showing mixed immune response with distinct biased towards anti-inflammatory Th2 phenotype. The pvtrag 35.2 gene was highly conserved in the parasite population whereas pvtrag 80.6 showed minor variations in the N-terminal region but highly conserved in the C-terminal region containing tryptophan-rich domain.  相似文献   

4.
The Plasmodium vivax merozoite Duffy binding protein (DBP) contains a cysteine-rich region II (DBPII) that binds to the Duffy Ag receptor for chemokines on erythrocytes, which is essential for parasite invasion. Cellular immune responses to DBPII have not been reported in P. vivax endemic populations, although they may contribute to partial acquired immunity. To examine host cellular immunity to DBPII and identify major T cell epitopes, PBMCs from 107 individuals (2-68 years old) were examined for cytokine production by ELISPOT and/or ELISA to rDBP and overlapping peptides (displaced by 2 aa spanning a 170-aa region of DBPII corresponding to the critical binding motif to the Duffy Ag receptor for chemokines). In P. vivax-exposed subjects, 60 and 71% generated significant rDBP-induced IFN-gamma and IL-10 production, respectively, 11% stimulated IL-2, and IL-5 and IL-13 were not detected. Children <5 years of age had reduced levels and frequency of rDBP-induced IL-10 and IFN-gamma production compared with partially immune older children and adults (p < 0.01). Five major T cell epitopes were identified. Three of these T cell epitopes contained polymorphic residues present in the population. Peptides synthesized corresponding to these variants induced IFN-gamma and IL-10 production to one variant and little response to the other variant in the same individual. These results demonstrate age-dependent and variant-specific cellular immune responses to DBPII and implicate this molecule in partial acquired immunity to P. vivax in endemic populations.  相似文献   

5.
Plasmodium vivax requires interaction with the Duffy antigen receptor for chemokines (DARC) to enable its invasion of human erythrocytes. Interaction with DARC is mediated by the P. vivax Duffy-binding protein (PvDBP) and is essential for junction formation, which is a key step in the invasion process. The receptor-binding domain of PvDBP maps to a conserved cysteine-rich region, referred to as region II (PvRII). Here, we review data on the interaction of PvRII with DARC and explore the potential of targeting this crucial receptor-ligand interaction to develop new intervention strategies against P. vivax.  相似文献   

6.
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.  相似文献   

7.
Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Plasmodium vivax is completely dependent on interaction with the Duffy blood group antigen to invade human erythrocytes. The P. vivax Duffy-binding protein, which binds the Duffy antigen during invasion, belongs to a family of erythrocyte-binding proteins that also includes Plasmodium falciparum sialic acid binding protein and Plasmodium knowlesi Duffy binding protein. The receptor binding domains of these proteins lie in a conserved, N-terminal, cysteine-rich region, region II, found in each of these proteins. Here, we have expressed P. vivax region II (PvRII), the P. vivax Duffy binding domain, in Escherichia coli. Recombinant PvRII is incorrectly folded and accumulates in inclusion bodies. We have developed methods to refold and purify recombinant PvRII in its functional conformation. Biochemical, biophysical, and functional characterization confirms that recombinant PvRII is pure, homogeneous, and functionally active in that it binds Duffy-positive human erythrocytes with specificity. Refolded PvRII is highly immunogenic and elicits high titer antibodies that can inhibit binding of P. vivax Duffy-binding protein to erythrocytes, providing support for its development as a vaccine candidate for P. vivax malaria. Development of methods to produce functionally active recombinant PvRII is an important step for structural studies as well as vaccine development.  相似文献   

8.
Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24–106), middle (amino acid position 107–192), and C-terminal region (amino acid position 185–275) and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171–191 amino acid position) and peptide P8 (at 255–275 amino acid position), were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent.  相似文献   

9.
Caseinolytic protease (ClpP) has been found to be highly conserved among different strains of Streptococcus pneumoniae and intraperitoneal immunization with ClpP could elicit protection against invasive pneumococcal infections. In this study, mucosal immunization with ClpP antigen induced both systemic and mucosal antibodies, and in this way reduced lung colonization in an invasive pneumococcal pneumonia model and also protected mice against death in an intraperitoneal-sepsis model. Surface localization of ClpP was confirmed using flow cytometry analysis. Furthermore, characterization of human sera for anti-ClpP IgG antibody levels demonstrated that ClpP protein was immunogenic in healthy children and was expressed during disease based on the elevated antibody levels in infected individuals. Finally, we describe that in vitro functional anti-ClpP antibody could kill streptococcus pneumoniae by polymorphonuclear leukocytes in a complement-dependent assay. To our knowledge, this is the first study about the protective efficacy of mucosal immunization with ClpP as a promising pneumococcal protein antigen.  相似文献   

10.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

11.
Bioinformatic analyses of gene homologues have revealed functionally conserved epitopes between human and rodent malaria parasites. Here, we present experimental evidence for the presence of functionally and antigenically conserved domains between Plasmodium falciparum and Plasmodium yoelii asexual blood-stages. Merozoite released soluble proteins (MRSPs) from both P. falciparum and P. yoelii bound to heterologous mouse or human red blood cells, respectively. The presence of conserved antigenic epitopes between the two species of parasites was evident by the inhibitory effect of antibodies, developed against P. yoelii in convalescent mice, on P. falciparum growth and merozoite reinvasion in vitro. Furthermore, mice immunized with P. falciparum MRSPs were protected from infection by a P. yoelii challenge. These data indicate that different species of Plasmodium contain antigenically conserved interspecies domains, which are immunogenic and, thus constitute a potential novel antigen source for vaccine development and testing using a mouse model.  相似文献   

12.
13.
Protective antigens of rodent and human bloodstage malaria   总被引:8,自引:0,他引:8  
Bloodstage malaria parasites are antigenically complex, but individual antigens can be identified and analysed using monoclonal antibodies. Two monoclonal antibodies that recognize a 235 000 molecular mass Plasmodium yoelii rhoptry protein provide some protection when injected into mice against a challenge infection. The purified rhoptry protein also provides protective immunity against P. yoelii YM when used to vaccinate mice and fulminating infections are converted into self-limiting, reticulocyte-restricted infections. Another monoclonal antibody immunoprecipitates a 230 000 molecular mass protein and a series of proteolytic processing fragments. At least one of these processing fragments, probably a 90 000 molecular mass species, is located on the merozoite surface. Mice immunized with the purified protein were protected against challenge infection with P. yoelii YM. This antigen may provide protection by inducing a cell-mediated immune response. A monoclonal antibody raised against P. falciparum schizonts reacts with a 195 000 molecular mass protein which is synthesized in schizonts and subsequently cleaved. Fragments of the 195 000 molecular mass protein are expressed as major antigens on the merozoite surface. The 195 000 molecular mass P. falciparum protein and the 230 000 molecular mass P. yoelii protein belong to a class of malaria parasite antigens which probably is important in the induction of a protective immune response in the host.  相似文献   

14.
The Plasmodium circumsporozoite protein/thrombospondin-related anonymous protein-related protein (CTRP) is expressed at the mosquito midgut ookinete stage and is considered to be a transmission-blocking vaccine candidate. CTRP is composed of multiple von Willebrand factor A (vWA) and thrombospondin type 1 domains in the extracellular portion of the molecule, and a short acidic cytoplasmic domain that interacts with the actomyosin machinery. As a means to predict functionally relevant domains within CTRP we determined the nucleotide sequences of CTRP from the Plasmodium vivax Sall and the Plasmodium yoelii 17XL strains and characterized the conservation of domain architectures and motifs across Plasmodium genera. Sequence alignments indicate that the CTRP 1st to 4th vWA domains exhibit greater conservation, and thereby are perhaps functionally more important than the 5th and 6th domains. This point should be considered for the development of a transmission-blocking vaccine that includes CTRP recombinant subunit. To complement previous cellular studies on CTRP, we further determined the expression and cellular localization of CTRP protein in P. vivax and P. yoelii.  相似文献   

15.
16.
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.  相似文献   

17.
Passive immunization against murine malaria with an IgG3 monoclonal antibody   总被引:31,自引:0,他引:31  
Spleen cells of BALB/c mice that were immune to the 17X strain of P. yoelii were fused with P3X63Ag8 myeloma cells. Two hundred fifty-three of 1053 hybrid cells produced antibodies reactive with disrupted 17X parasites in a solid phase radioimmunoassay. One of these antibodies, McAb 302, reacted with the merozoites of the 17X (nonlethal) and 17XL (lethal) variants of P. yoelii. Of greater significance, McAb 302 passively protected mice against challenge infection with the lethal variant. Mice treated with this antibody before infection developed low-grade parasitemia (less than 0.3%) of short duration when challenged with P. yoelii 17XL . In contrast, control mice that had been untreated or injected with ascites fluid lacking McAb 302 uniformly died with fulminating malaria upon challenge with the same parasite. In other experiments, McAb 302 was shown capable of controlling blood parasite levels when administered to mice with patent P. yoelii 17XL infections. Although all control mice died, mice protected with a single dose of McAb 302 ultimately cleared their infections. Regardless of how passive immunization was performed, mice given McAb 302 were resistant to subsequent challenge with P. yoelii 17XL , indicating they had developed significant immunity during their initial controlled infections. McAb 302 also showed pronounced passive protective activity against the nonlethal 17X strain of P. yoelii, which is a parasite of reticulocytes. The protection afforded by McAb 302 was specific, because mice passively immunized with this antibody died when challenged with the unrelated P. vinckei. McAb 302 was shown to possess the IgG3 isotype and precipitated a 230-kd protein plus several smaller polypeptides from metabolically labeled parasite antigen preparation derived from both variants of P. yoelii. It did not react with similar preparations of other murine plasmodial species.  相似文献   

18.
BACKGROUND: The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP1(19) from Plasmodium vivax, a major human malaria parasite. MATERIALS AND METHODS: We cloned and sequenced 88 gene fragments representing the MSP1(19) from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP1(19) described thus far. RESULTS: We observed that DNA sequences encoding MSP1(19) were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein. CONCLUSIONS: Our findings suggest that the use of MSP1(19) as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies.  相似文献   

19.
20.
The serine repeat antigen gene family of Plasmodium falciparum (Pf-SERA) consists of nine gene members. By sequence similarity search, 45 genes were identified to be homologous to the Pf-SERA genes in the ongoing seven Plasmodium genome sequencing project databases for the species: P. reichenowi, P. vivax, P. knowlesi, P. yoelii, P. berghei, P. chabaudi, and P. gallinaceum. In combination with additional PCR-based sequencing, we found that almost all SERA genes in each species were aligned in a tandem cluster and sandwiched between two conserved hypothetical protein genes, except for P. reichenowi, which could not be confirmed. The minimum and maximum numbers of clustered genes were 2 and 12 for P. gallinaceum and P. vivax, respectively. The best tree of the maximum likelihood analysis demonstrated that all Plasmodium SERA homologues, except for SERA1 of P. gallinaceum (Pg-SERA1), can be classified into four groups, represented by Pf-SERA5, Pf-SERA6, Pf-SERA7, and Pf-SERA8. Genes in the Pf-SERA8 group, although highly divergent and distantly related to the sequences of other groups, were not pseudogenes. P. berghei SERA5, the counterpart of Pf-SERA8, was expressed in the mosquito stage. P. gallinaceum lacks the orthologues to Pf-SERA5, Pf-SERA6, and Pf-SERA7, suggesting that P. gallinaceum diverged from a common ancestor of all eight Plasmodium species examined before gene duplication(s) occurred to generate these paralogous groups. Here, we reveal an evolutionary trail of SERA gene cluster in the genus Plasmodium and discuss a phylogeny of Plasmodium species from the viewpoint of the evolution of a multigene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号