首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the plasma beta carotene concentrations in 40 Alzheimer's disease patients and the association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), cerebrospinal fluid beta-amyloid 1-42 (Abeta42) and cerebrospinal fluid total Tau. We found that patients with plasma beta carotene levels below the 25th percentile had 55% reduced ratios of Abeta40/Tau and 51% reduced ratios of Abeta 40/Abeta 42 compared with patients in the highest quartile. Mean Tau concentrations in the lowest quartile of plasma beta-carotene levels were 74% higher compared with the highest quartile of plasma beta-carotene levels. Thus, we could demonstrate an statistically significant association between beta carotene levels in plasma and neurochemical markers in the cerebrospinal fluid of Alzheimer's disease patients.  相似文献   

2.
Synaptic vesicles are central to neurotransmission and cognition. Studies of the Alzheimer's disease (AD) associated peptide, amyloid beta (Abeta), suggest that it has the potential to non-specifically solubilize or permeabilize membranes and that it has detergent and pore-forming properties. Damage to the membrane or integrity of synaptic vesicles could compromise its function. We test the hypothesis that the intact synaptic vesicle is a direct site of attack by Abeta1-42 in AD pathology by examining the properties of individual isolated vesicles exposed to Abeta1-42. In particular, we compared the rate of leakage of dye molecules from synaptic vesicles, the rate of proton permeation across the membrane of the vesicle, and the rate of active proton transport into the vesicle interior in the presence and absence of Abeta1-42. From these experiments, we conclude that isolated synaptic vesicles are not disrupted by Abeta1-42.  相似文献   

3.
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a progressive mental deterioration manifested by memory loss. No definite etiology has been established for AD to date. Amyloid beta (Abeta) protein plays a central role in the pathology of AD through multiple pathways like oxidative stress, apoptosis etc. Recently, our laboratory first time has evidenced localization of Abeta immunoreactivity in apoptotic nuclei of degenerating AD brain hippocampal neurons and also showed that Abeta (1-42) binds and alters the helicity of DNA. The present study provided fundamental data on DNA nicking induced by Abeta. The results showed that Abeta (1-42) has DNA nicking activity similar to nucleases. Further, magnesium ion (1mM) enhanced DNA nicking activity of Abeta. The data on Abeta solution stability on DNA nicking revealed that the oligomers of Abeta (1-42) peptides showed more DNA nicking activity compared to monomers and fibrillar forms. The nuclease specific inhibitor aurintricarboxylic acid prevented the DNA nicking property of Abeta. Transmission electron microscopy (TEM) studies revealed that Abeta causes open circular and linear forms in supercoiled DNA and also clearly evidenced the physical association of protein-DNA complex. The above data indicated that Abeta mimics endonuclease behavior. Our finding of DNA nicking activity of Abeta peptides has biological significance in terms of causing direct DNA damage.  相似文献   

4.
Previously, we found that amyloid beta-protein (Abeta)1-42 exhibits neurotoxicity, while Abeta1-40 serves as an antioxidant molecule by quenching metal ions and inhibiting metal-mediated oxygen radical generation. Here, we show another neuroprotective action of nonamyloidogenic Abeta1-40 against Abeta1-42-induced neurotoxicity in culture and in vivo. Neuronal death was induced by Abeta1-42 at concentrations higher than 2 microm, which was prevented by concurrent treatment with Abeta1-40 in a dose-dependent manner. However, metal chelators did not prevent Abeta1-42-induced neuronal death. Circular dichroism spectroscopy showed that Abeta1-40 inhibited the beta-sheet transformation of Abeta1-42. Thioflavin-T assay and electron microscopy analysis revealed that Abeta1-40 inhibited the fibril formation of Abeta1-42. In contrast, Abeta1-16, Abeta25-35, and Abeta40-1 did not inhibit the fibril formation of Abeta1-42 nor prevent Abeta1-42-induced neuronal death. Abeta1-42 injection into the rat entorhinal cortex (EC) caused the hyperphosphorylation of tau on both sides of EC and hippocampus and increased the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the ipsilateral EC, which were prevented by the concurrent injection of Abeta1-40. These results indicate that Abeta1-40 protects neurons from Abeta1-42-induced neuronal damage in vitro and in vivo, not by sequestrating metals, but by inhibiting the beta-sheet transformation and fibril formation of Abeta1-42. Our data suggest a mechanism by which elevated Abeta1-42/Abeta1-40 ratio accelerates the development of Alzheimer's disease (AD) in familial AD.  相似文献   

5.

Background  

Simple, non-invasive tests for early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers for the early diagnosis of Alzheimer disease (AD) are available. The clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. A biochemical marker that would support the clinical diagnosis and distinguish AD from other causes of dementia would therefore be of great value as a screening test. A total of 126 samples were obtained from subjects with AD, and age-sex-matched controls. Additionally, 51 Parkinson's disease (PD) patients were used as an example of another neurodegenerative disorder. We analyzed saliva and plasma levels of β amyloid (Aβ) using a highly sensitive ELISA kit.  相似文献   

6.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

7.
Self-assembly of Abeta(1-42) into globular neurotoxins   总被引:4,自引:0,他引:4  
Amyloid beta 1-42 (Abeta(1-42)) is a self-associating peptide that becomes neurotoxic upon aggregation. Toxicity originally was attributed to the presence of large, readily formed Abeta fibrils, but a variety of other toxic species are now known. The current study shows that Abeta(1-42) can self-assemble into small, stable globular assemblies free of fibrils and protofibrils. Absence of large molecules was verified by atomic force microscopy (AFM) and nondenaturing gel electrophoresis. Denaturing electrophoresis revealed that the globular assemblies comprised oligomers ranging from trimers to 24mers. Oligomers prepared at 4 degrees C stayed fibril-free for days and remained so when shifted to 37 degrees C, although the spectrum of sizes shifted toward larger oligomers at the higher temperature. The soluble, globular Abeta(1-42) oligomers were toxic to PC12 cells, impairing reduction of MTT and interfering with ERK and Rac signal transduction. Occasionally, oligomers were neither toxic nor recognized by toxicity-neutralizing antibodies, suggesting that oligomers could assume alternative conformations. Tests for oligomerization-blocking activity were carried out by dot-blot immunoassays and showed that neuroprotective extracts of Ginkgo biloba could inhibit oligomer formation at very low doses. The observed neurotoxicity, structure, and stability of synthetic Abeta(1-42) globular assemblies support the hypothesis that Abeta(1-42) oligomers play a role in triggering nerve cell dysfunction and death in Alzheimer's disease.  相似文献   

8.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

9.
The acute effects of beta-amyloid (25-35) and (1-40) on high voltage activated calcium channels were compared in CA1 pyramidal cells of adult mouse hippocampal slices using the whole-cell patch-clamp recording. Bath application of oligomeric beta-amyloid (25-35) reversibly increased the barium current (I(Ba)) to 1.61 (normalized amplitude), while oligomeric beta-amyloid (1-40) reversibly enhanced the I(Ba) to 1.74. Reverse-sequence beta-amyloid [(35-25) and (40-1)] had no effect. The effect of beta-amyloid (25-35) was blocked by nifedipine, a selective antagonist of L-type calcium channels. In contrast, the effect of beta-amyloid (1-40) was not blocked by nifedipine and I(Ba) was enhanced to 4.96. It is concluded that these oligomeric peptides may act through different types of calcium channels and/or receptors. The toxicity of Abeta(25-35) implicates a potentiation of L-type calcium channels while the one of Abeta(1-40) is related to an increase of non-L-type calcium channels, which may involve an increase in transmitter release.  相似文献   

10.
The etiopathogenesis of Alzheimer's disease is far from being clearly understood. However, the involvement of metal ions as a potential key factor towards conformational modifications and aggregation of amyloid is widely recognized. The aim of the present study is to shed some light on the relationship between metal ions, amyloid conformation/aggregation, and their potential relationship with the conformational aspects of AD. We compare the effects of beta-amyloid(1-42) and its various metal complexes (beta-amyloid-Al, beta-amyloid-Zn, beta-amyloid-Cu, beta-amyloid-Fe) in human neuroblastoma cells in terms of cell viability, membrane structure properties, and cell morphology. No significant toxic effects were observed in neuroblastoma cells after 24h treatment both with beta-amyloid and beta-amyloid-metals (beta-amyloid-Zn, beta-amyloid-Cu, beta-amyloid-Fe); on the other hand, there was a marked reduction of cellular viability after treatment with beta-amyloid-Al complex. In addition, treatment with beta-amyloid-Al increased membrane fluidity much more than other beta-amyloid-metal complexes, whose contribution was negligible. Furthermore, the cellular morphology, as observed by electron microscopy, was deeply altered by beta-amyloid-Al. Importantly, beta-amyloid-Al toxicity is closely and significantly associated with a great difference in the structure/aggregation of this complex with respect to that of beta-amyloid alone and other beta-amyloid-metal complexes. In addition, beta-amyloid, as a consequence of Al binding, becomes strongly hydrophobic in character. These findings show a significant involvement of Al, compared to the other metal ions used in our experiments, in promoting a specific amyloid(1-42) aggregation, which is able to produce marked toxic effects on neuroblastoma cells, as clearly demonstrated for the first time in this study.  相似文献   

11.
Aggregation of the human amyloid beta-peptide (Abeta) into insoluble plaques is a key event in Alzheimer's disease. Zinc sharply accelerates the Abeta aggregation in vitro, and the Abeta region 6-28 was suggested to be the obligatory zinc binding site. However, time-dependent aggregation of the zinc-bound Abeta species investigated so far prevented their structural analysis. By using CD spectroscopy, we have shown here for the first time that (i) the protected synthetic peptide spanning the fragment 1-16 of Abeta binds specifically zinc with 1:1 and 1:2 stoichiometry under physiologically relevant conditions; (ii) the peptide-zinc complex is soluble and stable for several months; (iii) zinc binding causes a conformational change of the peptide towards a more structured state. These findings suggest the region 1-16 to be the minimal autonomous zinc binding domain of Abeta.  相似文献   

12.
Pr-IIGL(a), a derivative of the tetrapeptide beta-amyloid 31-34 (Abeta(31-34)), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Abeta(1-42). For an understanding of this phenomenon, a new pentapeptide, RIIGL(a) was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL(a) forms fibrillar aggregates, whereas RIIGL(a) does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL(a) acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL(a) does not display inherent toxicity. RIIGL(a) co-incubated with Abeta(1-42) inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Abeta(1-42). These results indicate that RIIGL(a) is an effective inhibitor of both the aggregation and the toxic effects of Abeta(1-42) and can serve as a lead compound for the design of novel neuroprotective peptidomimetics.  相似文献   

13.
Major constituents of the amyloid plaques found in the brain of Alzheimer's patients are the 39-43 residue beta-amyloid (Abeta) peptides. Extensive in vitro as well as in vivo biochemical studies have shown that the 40- and 42-residue Abeta peptides play major roles in the neurodegenerative pathology of Alzheimer's disease. Although the two Abeta peptides share common aggregation properties, the 42-residue peptide is more amyloidogenic and more strongly associated with amyloid pathology. Thus, characterizations of the two Abeta peptides are of critical importance in understanding the molecular mechanism of Abeta amyloid formation. In this report, we present combined CD and NMR studies of the monomeric states of the two peptides under both non-amyloidogenic (<5 degrees C) and amyloid-forming conditions (>5 degrees C) at physiological pH. Our CD studies of the Abeta peptides showed that initially unfolded Abeta peptides at low temperature (<5 degrees C) gradually underwent conformational changes to more beta-sheet-like monomeric intermediate states at stronger amyloidogenic conditions (higher temperatures). Detailed residue-specific information on the structural transition was obtained by using NMR spectroscopy. Residues in the N-terminal (3-12) and 20-22 regions underwent conformational changes to more extended structures at the stronger amyloidogenic conditions. Almost identical structural transitions of those residues were observed in the two Abeta peptides, suggesting a similar amyloidogenic intermediate for the two peptides. The 42-residue Abeta (1-42) peptide was, however, more significantly structured at the C-terminal region (39-42), which may lead to the different aggregation propensity of the two peptides.  相似文献   

14.
Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue involved in amyloid beta-peptide 1-42 [A beta1-42]-mediated toxicity and therefore, the pathogenesis of AD. Previous studies have shown that mutation of the methionine residue to norleucine abrogates the oxidative stress and neurotoxic properties of A beta(1-42). In the current study, we examined if the position of methionine at residue 35 is a criterion for toxicity. In doing so, we tested the effects of moving methionine to the N-terminus of the peptide in a synthetic peptide, A beta(1-42)D1M, in which methionine was substituted for aspartic acid at the N-terminus of the peptide and all subsequent residues from D1 to L34 were shifted one position towards the carboxy-terminus. A beta(1-42)D1M exhibited oxidative stress and neurotoxicity properties similar to those of the native peptide, A beta(1-42), all of which are inhibited by the free radical scavenger Vitamin E, suggesting that reactive oxygen species may play a role in the A beta-mediated toxicity. Additionally, substitution of methionine at the N-terminus by norleucine, A beta(1-42)D1Nle, completely abrogated the oxidative stress and neurotoxicity associated with the A beta(1-42)D1M peptide. The results of this study validate the chemistry reported for short peptides with N-terminal methionines in a disease-relevant peptide.  相似文献   

15.
CD and infrared spectroscopic studies were performed on (i) the inhibitory effects of equimolar quantities of LPFFD-OH and LPYFD-NH(2) on the time-dependent aggregation of amyloid beta-protein (Abeta) (1-42) and (ii) the beta-sheet-breaker effects of two-fold molar excess of the pentapeptides on aggregated Abeta(1-42) aged 1 week. The data obtained from the time-dependent studies demonstrated that LPFFD-OH did not significantly influence, whereas LPYFD-NH(2) exerted some inhibitory effect on the aggregation of Abeta(1-42). When added to a solution of Abeta(1-42) aged 1 week, LPFFD-OH accelerated, while LPYFD-NH(2) delayed, but did not prevent further fibrillogenesis. The difference in the effects of these two pentapeptides on the aggregational profile of Abeta(1-42) is probably due to the difference in their conformational preferences: LPFFD-OH adopts a beta-turn and extended structures, while LPYFD-NH(2) adopts a prevailing beta-turn conformation.  相似文献   

16.
Alzheimer's disease is a progressive neurodegenerative disease associated with loss of memory and cognition. One hallmark of AD is the accumulation of amyloid beta-peptide (Abeta), which invokes a cascade of oxidative damage to neurons that can eventually result in neuronal death. Several markers of oxidative stress have been identified in AD brain, thus providing greater understanding into potential mechanisms involved in the disease pathogenesis and progression. In the present article, we review the application of redox proteomics to the identification of oxidized proteins in AD brain and also our recent findings on amyloid beta-peptide (Abeta)-associated in vivo and in vitro models of AD. Our redox proteomics approach has made possible the identification of specifically oxidized proteins in Alzheimer's disease (AD) brain, providing for the first time evidence on how oxidative stress plays a crucial role in AD-related neurodegeneration. The information obtained has great potential to aid in determining the molecular pathogenesis in and detecting disease markers of AD, as well as identifying potential targets for drug therapy in AD. Application of redox proteomics to study cellular events, especially related to disease dysfunction, may provide an efficient tool to understand the main mechanisms involved in the pathogenesis and progression of oxidative stress-related neurodegenerative disorders.  相似文献   

17.
Beta-amyloid peptides (Abetas) bind to several G-protein coupled receptor proteins and stimulate GTPase activity in neurons. In this study we determined the effects of Abeta(1-42), Abeta(1-40), Abeta(25-35) and their mixtures on [(35)S]GTP binding in rat brain cortical membranes in the absence and presence of zinc. We found that the Abetas alone induced a concentration-dependent activation of G-proteins (IC50 approximately 10(-6) m), while aggregated Abeta fibrils only affected GTP binding at concentrations above 10(-5) m. Mixing Abeta(25-35) with Abeta(1-42) or Abeta(1-40) induced a several-fold increase in GTP-binding. This potentiation followed a bell shaped curve with a maximum at 50 : 50 ratios. No potentiating effect could be seen by mixing Abeta(1-40) and Abeta(1-42) or highly aggregated Abetas. Zinc had no effect on Abeta(1-40/42) but strongly potentiated the Abeta(25-35) or the mixed peptides-induced GTP-binding. Changes in secondary structure accompanied the mixed peptides or the peptide/zinc complexes induced potentiation, revealing that structural alterations are behind the increased biological action. These concentration dependent potentiating effects of zinc and the peptide mixtures could be physiologically important at brain regions where peptide fragments and/or zinc are present at elevated concentrations.  相似文献   

18.
β-amyloid peptide (Aβ) is considered to be responsible for the formation of senile plaques,which is the hallmark of Alzheimer's disease (AD).Oxidative stress,manifested by protein oxidation andlipid peroxidation,among other alterations,is a characteristic of AD brain.A growing body of evidence hasbeen presented in support of Aβ_(1-40) forming an oligomeric complex that binds copper at a CuZn superoxidedismutase-like binding site. Aβ_(1-40)Cu(Ⅱ) complexes generate neurotoxic hydrogen peroxide (H_2O_2) from O_2via Cue reduction,though the precise reaction mechanism is unclear.The toxicity of Aβ_(1-40) or the Aβ_(1-40)Cu(Ⅱ)complexes to cultured primary cortical neurons was partially attenuated when ( )-α-tocopherol (vitamin E)as free radical antioxidant was added at a concentration of 100 μM.The data derived from lactate dehydro-genase (LDH) release and the formation of H_2O_2 confirmed the results from the MTT assay.These findingsindicate that copper binding to Aβ_(1-40) can give rise to greater production of H_2O_2, which leads to a break-down in the integrity of the plasma membrane and subsequent neuronal death.Groups treated with vitaminE exhibited much slighter damage,suggesting that vitamin E plays a key role in protecting neuronal cellsfrom dysfunction or death.  相似文献   

19.
A previously unrecognized large pool of Abeta was discovered in freshly drawn plasma of patients diagnosed with Alzheimer's disease (AD) and non-demented control subjects. This Abeta pool was revealed after acid denaturation and chromatographic separation of plasma proteins followed by Abeta quantitation in the 4.5 kDa fractions by europium immunoassay. The mean values of Abeta42 in the AD and control individuals amounted to 236 ng/ml and 38 ng/ml, respectively. These Abeta values are on the average far higher than previously measured. Surprisingly, the circulating Abeta42 is about 16 times more abundant than Abeta40 in the AD population. Addition of Abeta to freshly drawn plasma demonstrated the rapid disappearance of Abeta epitopes, as detected by immunochemical techniques, suggesting either proteolytic degradation or Abeta sequestration. Incubation of Abeta with purified plasma proteins and lipoproteins rapidly decreases detectable levels of free Abeta suggesting epitope masking as the likely mechanism. The free and protein-bound Abetab in the circulation may represent a potential source for deposition in the cerebrovasculature and brain parenchyma of AD.  相似文献   

20.
We have shown previously that β-catenin and cyclin D1 are up-regulated in cortical neurons from homozygous mice carrying the familial Alzheimer's disease (FAD) presenilin-1 M146V mutation in a knock-in model (PS1 KIM146V mice), leading to cell cycle-associated apoptosis. Here, we have aimed to determine (i) whether this phenotype is present in heterozygous PS1 KIM146V mice, which reflects more accurately the PS1 FAD condition in humans and (ii) whether Aβ1–42, which is invariably present in the PS1 FAD brain and is thought to affect neuronal cell cycle kinetics, may contribute to the abnormal cell cycle/cell death phenotype seen in PS1 KIM146V mice. We demonstrate that cell cycle-linked apoptosis occurs in heterozygous PS1 KIM146V post-mitotic neurons. In addition, there is a significant Aβ-associated increase in cell cycle and cell death that is not further modified by the PS1 KIM146V mutation. Our results are consistent with a cell cycle-associated neurodegeneration model in the PS1 FAD brain in which the loss of PS1-dependent β-catenin regulatory function is sufficient to commit susceptible neurons to an abortive cell cycle, and may act synergistically with the Aβ cytotoxic challenge present in the PS1 FAD brain to expand the neuronal population susceptible to cell cycle-driven apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号