首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat‐growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041–2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO2 emission scenario by 2081–2100 due to increasing losses in suitable wheat‐growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production.  相似文献   

2.
人工林是全球森林资源的重要组成部分,在木材生产、环境改善、景观建设和减缓气候变化等方面扮演着愈来愈重要的角色。尽管我国人工林面积和蓄积不断增长,但是,人工林存在质量较差、结构不尽合理、生产力不高、生态功能较弱和生态稳定性下降等问题。人工林生态系统服务功能难以满足经济社会日益增长和新时期人们对美好生活向往的多方面需求。面对未来人工林面积继续增加受到适宜发展空间的严重制约和气候变化带来的现实和潜在的影响,亟需改变和调整我国人工林经营的发展战略和对策,将从人工林面积扩张、蓄积增加转变为人工林生态系统服务的质量和效益提升。如何提高人工林生态系统服务的质量和效益,创建健康稳定、高生产力和高碳汇的人工林生态系统,既能提供高产优质木材,又能够发挥固碳减排、生物多样性保护、水源涵养和水土保持等多种生态功能,以满足经济社会发展对森林的多种新需求和林业应对气候变化的新任务,亟需探索适合我国新时期人工林生态系统可持续经营的理论和多目标经营范式。在深入分析国际和我国人工林发展历程、变化趋势、面临问题的基础上,充分汲取和借鉴国际人工林经营的理念、经验和实践成果,并结合我国现阶段人工林发展实际情况,探索人工林生态系统服务质量与效益提升的发展思路和实践途径,从多层次、多尺度定位面向生态系统服务的人工林经营对策,倡导并实施人工林生态系统适应性经营,实现人工林生态系统服务的多目标权衡与协同,为我国人工林经营的战略转变和对策创新提供决策参考与未来展望。  相似文献   

3.
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi‐environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype‐by‐environment (G×E) modelling. Sub‐populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock‐related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large‐effect alleles. Our analysis supports a gene‐level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.  相似文献   

4.
李海东  高吉喜 《生态学报》2020,40(11):3844-3850
应对气候变化和保护生物多样性是2大全球性热点环境问题。气候变化导致物种多样性丧失、生态系统服务降低和区域生态安全屏障功能受损,威胁到中国国土生态安全格局和生态脆弱区域的可持续发展,给生物多样性保护带来新的挑战。做好生物多样性保护适应气候变化的风险管理工作,既是生物多样性应对气候变化风险的必要措施,也是减缓气候变化的重要途径。结合爱知目标10的实现情况,分析了欧盟、澳大利亚、美国等发达国家发布的生物多样性适应气候变化技术政策制定情况、中国生物多样性应对气候变化进展情况,剖析了中国生物多样性保护适应气候变化存在的问题,包括生物多样性应对气候变化的科学认知亟待提高、生物多样性保护适应气候变化的能力建设不足、自然保护地之间缺乏适应气候变化的生态廊道网络、生物多样性保护适应气候变化的技术标准缺乏。研究提出了中国生物多样性应对气候变化的适应性管理策略,包括制定《中国生物多样性保护协同应对气候变化的国家方案》、加强生物多样性保护适应气候变化的能力建设、开展自然保护区适应气候变化的风险管理试点、强化生物多样性应对气候变化的科技支撑,以期为推进纳入气候变化风险管理的生物多样性保护工作提供决策依据。  相似文献   

5.
The exploration of evolutionary biology and biological adaptation can inform society's adaptation to climate change, particularly the mechanisms that bring about adaptability, such as phenotypic plasticity, epigenetics, and horizontal gene transfer. Learning from unplanned autonomous biological adaptation may be considered undesirable and incompatible with human endeavor. However, it is argued that there is no need for agency, and planned adaptation is not necessarily preferable over autonomous adaptation. What matters is the efficacy of adaptive mechanisms and their capacity to increase societal resilience to current and future impacts. In addition, there is great scope for industrial ecology (IE) to contribute approaches to climate change adaptation that generate system models and baseline data to inform decision making. The problem of “uncertainty” was chosen as an example of a challenge that is shared by biological systems, IE, and climate change adaptation to show how biological adaptation might contribute solutions. Finally, the Coastal Climate Adaptation Decision Support tool was used to demonstrate how IE and biological adaptation approaches may be mainstreamed in climate change adaptation planning and practice. In conclusion, there is close conceptual alignment between evolutionary biology and IE. The integration of biological adaptation thinking can enrich IE, add new perspectives to climate change adaptation science, and support IE's engagement with climate change adaptation. There should be no major obstacles regarding the collaboration of industrial ecologists with the climate change adaptation community, but mainstreaming of biological adaptation solutions depends greatly on successful knowledge transfer and the engagement of open‐minded and informed adaptation stakeholders.  相似文献   

6.
Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change and synthesize case studies (n = 27) of how marine conservation planning can respond to shifting environmental conditions. First, we derive a generalized conservation planning framework based on five published frameworks that incorporate climate change adaptation to inform MPA design. We then summarize examples from the scientific literature to assess how conservation goals were defined, vulnerability assessments performed and adaptation strategies incorporated into the design and management of existing or new MPAs. Our analysis revealed that 82% of real‐world examples of climate change adaptation in MPA planning derive from tropical reefs, highlighting the need for research in other ecosystems and habitat types. We found contrasting recommendations for adaptation strategies at the planning stage, either focusing only on climate refugia, or aiming for representative protection of areas encompassing the full range of expected climate change impacts. Recommendations for MPA management were more unified and focused on adaptative management approaches. Lastly, we evaluate common barriers to adopting climate change adaptation strategies based on reviewing studies which conducted interviews with MPA managers and other conservation practitioners. This highlights a lack of scientific studies evaluating different adaptation strategies and shortcomings in current governance structures as two major barriers, and we discuss how these could be overcome. Our review provides a comprehensive synthesis of planning frameworks, case studies, adaptation strategies and management actions which can inform a more coordinated global effort to adapt existing and future MPA networks to continued climate change.  相似文献   

7.
The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional explanatory and predictive power in disease risk assessments, leading to improved recommendations for agricultural adaptation to climate change. In this study, a crop‐growth model was combined with aerobiological models and a newly developed infection risk model to provide a framework for quantifying the impact of future climates on the risk of disease occurrence and spread. The integrated model uses standard meteorological variables and can be easily adapted to various crop pathosystems characterized by airborne inoculum. In a case study, the framework was used with data defining the spatial distribution of potato crops in Scotland and spatially coherent, probabilistic climate change data to project the future connectivity of crop distributions for Phytophthora infestans (causal agent of potato late blight) inoculum and the subsequent risk of infection. Projections and control recommendations are provided for multiple combinations of potato cultivar and CO2 emissions scenario, and temporal and spatial averaging schemes. Overall, we found that relative to current climatic conditions, the risk of late blight will increase in Scotland during the first half of the potato growing season and decrease during the second half. To guide adaptation strategies, we also investigated the potential impact of climate change‐driven shifts in the cropping season. Advancing the start of the potato growing season by 1 month proved to be an effective strategy from both an agronomic and late blight management perspective.  相似文献   

8.
Northeast China (NEC) accounts for about 30% of the nation's maize production in China. In the past three decades, maize yields in NEC have increased under changes in climate, cultivar selection and crop management. It is important to investigate the contribution of these changing factors to the historical yield increases to improve our understanding of how we can ensure increased yields in the future. In this study, we use phenology observations at six sites from 1981 to 2007 to detect trends in sowing dates and length of maize growing period, and then combine these observations with in situ temperature data to determine the trends of thermal time in the maize growing period, as a measure of changes in maize cultivars. The area in the vicinity of these six sites accounts for 30% of NEC's total maize production. The agricultural production systems simulator, APSIM‐Maize model, was used to separate the impacts of changes in climate, sowing dates and thermal time requirements on maize phenology and yields. In NEC, sowing dates trended earlier in four of six sites and maturity dates trended later by 4–21 days. Therefore, the period from sowing to maturity ranged from 2 to 38 days longer in 2007 than it was in 1981. Our results indicate that climate trends alone would have led to a negative impact on maize. However, results from the adaptation assessments indicate that earlier sowing dates increased yields by up to 4%, and adoption of longer season cultivars caused a substantial increase in yield ranging from 13% to 38% over the past 27 years. Therefore, earlier sowing dates and introduction of cultivars with higher thermal time requirements in NEC have overcome the negative effects of climate change and turned what would have otherwise been a loss into a significant increase in maize yield.  相似文献   

9.
Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture's substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio‐economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world's coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%–40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the ‘no mitigation policy’ scenario (RCP 8.5) by the mid‐21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 (‘strong mitigation’) and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.  相似文献   

10.
Purpose

Awareness regarding carbon and water footprint has gained visibility, encouraging actions towards compliance with the main available standards by fruit producers. This study presents the carbon and water footprint of packed mango produced in Vale do São Francisco, the main irrigated valley in Brazil. It provides an approach to identify the critical processes and opportunities for improvements in the conventional crop system that may support producers in the task of developing future site-specific assessments.

Methods

This assessment followed ISO 14046 and ISO 14067 for water and carbon footprints, respectively, as well as specific requirements of product category rule (PCR) 013 for fruits and nuts and Publicly Available Specification (PAS) 2051-1 for horticulture products. Primary data was collected for nursery (seedling), land use change, crop production, and packaging, considering five exported mango varieties: Palmer, Keitt, Kent, Haden, and Tommy Atkins. The carbon footprint assessment was based on the impact category climate change, while water footprint encompassed the following categories: water scarcity, marine and freshwater eutrophication, human toxicity (carcinogenic and non-carcinogenic), and freshwater ecotoxicity. The footprint analysis was performed for 1 kg of packed mango.

Results and discussion

The three main processes responsible for both footprints were related to crop production: fertilizer and electricity production as well as mango cropping. Moving from Caatinga vegetation to mango orchards increased carbon storage but was not enough to offset the impact on climate change. For water footprint, it was observed that the total volume of applied irrigation water was already below technical requirements and cannot be reduced, the same occurring for nitrogen fertilization. Scenario analysis showed that the use of alternative electricity sources and the reuse of wastewater brought no major improvement in results. Furthermore, the choice of local or country level characterization factors for water scarcity changed results significantly. Discussions are made regarding (i) the relevance of mango footprints when compared to other irrigated fruits, (ii) possibilities for improving mango footprint performance, (iii) the need for updating product category rules for fruits, and (iv) the quality of provided inventories and results.

Conclusions

The comparison of mango footprints with previous studies of irrigated fruits showed that mango performance is similar or better than many irrigated fruits, cultivated all over the world. Moreover, footprints may be further reduced if mango orchards are established in previously deforested land or areas occupied with annual crops and if improvements are made in the irrigation and fertilization practices at each mango production stage.

  相似文献   

11.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

12.
Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs was analyzed with respect to impacts on yields via crop type, region, and whether adaptation was included. Quantitative data on impacts and adaptation in livestock farming have been extremely scarce in the ARs. The main conclusions from impact and adaptation are that crop yields will decline, but that responses have large statistical variation. Mitigation assessments in the ARs have used both bottom‐up and top‐down methods but need better to link emissions and their mitigation with food production and security. Relevant policy options have become broader in later ARs and included more of the social and nonproduction aspects of food security. Our overall conclusion is that agriculture and food security, which are two of the most central, critical, and imminent issues in climate change, have been dealt with an unfocussed and inconsistent manner between the IPCC five ARs. This is partly a result of not only agriculture spanning two IPCC working groups but also the very strong focus on projections from computer crop simulation modeling. For the future, we suggest a need to examine interactions between themes such as crop resource use efficiencies and to include all production and nonproduction aspects of food security in future roles for integrated assessment models.  相似文献   

13.
气候变化已经对西藏地区产生了明显而深刻的影响。农牧民对气候变化的当地影响有较系统的认识。以西藏乃东区为研究对象。调查4个不同海拔梯度上农牧民对气候变化的感知与适应,然后利用气象数据对比农牧民对气候变化的感知,探究海拔高度与农牧民感知及其适应行为的关系,分析影响农牧民对气候变化感知与适应行为的因素。结果如下,研究区增温趋势明显,年降水量自2005年以来明显减少。不同梯度上的农牧民对当地气候变化的相对感知强度存在差异。农牧民对气温和雪覆盖变化的相对感知强度较高且基本随海拔升高而增强,而对雨季、农作物病虫害、新的病虫害变化的相对感知强度则随海拔升高而减弱。农牧民对年降水量的相对感知强度整体较低,但对近年年降水量持续减少记忆较深刻。在全球气候变化背景下,流域的上下两端会遭受较多的气候变化负面影响。农牧民对当地气候变化的感知与其采取的适应行为并不具有同步性。农牧民的受教育程度、经济状况、当地传统文化及其对气候变化的感知强度等因素均会影响农牧民对气候变化适应措施的选择。政府在制定及实施气候政策时应考虑流域内不同海拔高度区域气候变化特征及其影响的差异。  相似文献   

14.
Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.  相似文献   

15.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

16.
Food security and water scarcity have become two major concerns for future human''s sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security.  相似文献   

17.
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica''s environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.  相似文献   

18.
The world's oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions.  相似文献   

19.
The climate crisis is impacting agroecosystems and threatening food security of millions of smallholder farmers. Understanding the potential for current and future climatic adaptation of local crop agrobiodiversity may guide breeding efforts and support resilience of agriculture. Here, we combine a genomic and climatic characterization of a large collection of traditional barley varieties from Ethiopia, a staple for local smallholder farmers cropping in challenging environments. We find that the genomic diversity of barley landraces can be partially traced back to geographic and environmental diversity of the landscape. We employ a machine learning approach to model Ethiopian barley adaptation to current climate and to identify areas where its existing diversity may not be well adapted in future climate scenarios. We use this information to identify optimal trajectories of assisted migration compensating to detrimental effects of climate change, finding that Ethiopian barley diversity bears opportunities for adaptation to the climate crisis. We then characterize phenology traits in the collection in two common garden experiments in Ethiopia, using genome-wide association approaches to identify genomic loci associated with timing of flowering and maturity of the spike. We combine this information with genotype–environment associations finding that loci involved in flowering time may also explain environmental adaptation. Our data show that integrated genomic, climatic, and phenotypic characterizations of agrobiodiversity may provide breeding with actionable information to improve local adaptation in smallholder farming systems.  相似文献   

20.
雒丽  赵雪雁  王亚茹  张钦  薛冰 《生态学报》2017,37(2):593-605
气候变化作为人类当前面临的最严峻挑战,已对生态脆弱区农户生计产生严重的负面影响,明确农户对气候变化的感知对于制定有效的气候变化适应政策非常关键。以甘南高原为研究区,基于入户调查数据,构建了农户对气候变化的感知度指数,分析了甘南高原农户的气候变化感知特征,并采用经济计量模型分析了影响农户气候变化感知的关键因素。结果表明:(1)甘南高原农户对气温变化的感知能力强于对降水变化的感知,并对近期发生的、规模较大、影响较严重的极端天气记忆较深;(2)农户对气候变化的严重性及可能性感知较强烈,感知到的适应成本与适应功效也较高,但感知到的自我效能较弱,其气候变化严重性、可能性、适应功效、自我效能及适应成本感知度指数分别为3.76、3.34、3.43、2.85、3.53,且农区农户对气候变化的风险感知与适应感知均最强,半农半牧区次之,纯牧区最弱;(3)气候变化信息、农户的客观适应能力、农户对社会话语的信任度、适应激励均会影响农户的气候变化感知,其中,适应激励为最关键的影响因素,其与农户的气候变化适应功效感知、自我效能感知均呈正相关,而与风险感知、适应成本感知呈负相关。最后,针对如何提高农户气候变化感知的准确度,增强农户应对气候变化的能力,提出相关的政策建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号