首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ANO1, a calcium-activated chloride channel, is highly expressed and amplified in human cancers and is a critical survival factor in these cancers. The ANO1 inhibitor CaCCinh-A01 decreases proliferation of ANO1-amplified cell lines; however, the mechanism of action remains elusive. We explored the mechanism behind the inhibitory effect of CaCCinh-A01 on cell proliferation using a combined experimental and in silico approach. We show that inhibition of ANO1 function is not sufficient to diminish proliferation of ANO1-dependent cancer cells. We report that CaCCinh-A01 reduces ANO1 protein levels by facilitating endoplasmic reticulum-associated, proteasomal turnover of ANO1. Washout of CaCCinh-A01 rescued ANO1 protein levels and resumed cell proliferation. Proliferation of newly derived CaCCinh-A01-resistant cell pools was not affected by CaCCinh-A01 as compared with the parental cells. Consistently, CaCCinh-A01 failed to reduce ANO1 protein levels in these cells, whereas ANO1 currents were still inhibited by CaCCinh-A01, indicating that CaCCinh-A01 inhibits cell proliferation by reducing ANO1 protein levels. Furthermore, we employed in silico methods to elucidate novel biological functions of ANO1 inhibitors. Specifically, we derived a pharmacophore model to describe inhibitors capable of promoting ANO1 degradation and report new inhibitors of ANO1-dependent cell proliferation. In summary, our data demonstrate that inhibition of the channel activity of ANO1 is not sufficient to inhibit ANO1-dependent cell proliferation, indicating that the role of ANO1 in cancer only partially depends on its function as a channel. Our results provide an impetus for gaining a deeper understanding of ANO1 modulation in cells and introduce a new targeting approach for antitumor therapy in ANO1-amplified cancers.  相似文献   

2.
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.  相似文献   

3.
Cellular function and control of volume-regulated anion channels   总被引:7,自引:0,他引:7  
Restoration of cell volume after cell swelling in mammalian cells is achieved by the loss of solutes (K+, Cl, and organic osmolytes) and the subsequent osmotically driven efflux of water. This process is generally known as regulatory volume decrease (RVD). One pathway for the swelling induced loss of Cl (and also organic osmolytes) during RVD is the volume-regulated anion channel (VRAC). In this review, we discuss the physiological role and cellular control of VRAC. We will first highlight evidence that VRAC is more than a volume regulator and that it participates in other fundamental cellular processes such as cell proliferation and apoptosis. The second part concentrates on the Rho/Rho kinase/myosin phosphorylation cascade and on compartmentalization in caveolae as modulators of the signal transduction cascade that controls VRAC gating in vascular endothelial cells.  相似文献   

4.
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca2+-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca2+-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca2+-activated Cl channels.  相似文献   

5.
Anoctamin-1 (ANO1), also known as transmembrane protein 16A (TMEM16A), is identified as a Ca2+-activated Cl channel that is expressed in many organs and tissues. It is involved in numerous major physiological functions and especially in tumor growth. By screening 530 natural compounds, we identified cepharanthine as a potent blocker of ANO1 channels with an IC50 of 11.2 ± 0.9 μM and Emax of 92.7 ± 1.7%. The Lys384, Arg535, Thr539, and Glu624 in ANO1 are critical for the inhibitory effect of cepharanthine. Similar to its effect on ANO1, cepharanthine inhibits ANO2, the closest analog of TMEM16A. In contrast, up to 30 μM of cepharanthine showed limited inhibitory effects on recombinant ANO6 and bestrophin-1-encoded Ca2+-activated Cl currents, but it showed no effects on endogenous volume-regulated anion currents (VRAC). Cepharanthine could also potently suppress endogenous ANO1 currents, significantly inhibit cell proliferation and migration, and induce apoptosis in LA795 lung adenocarcinoma cells. Moreover, animal experiments have shown that cepharanthine can dramatically inhibit the growth of xenograft tumors in mice. The high specificity provided by cepharanthine could be an important foundation for future studies of the physiological role of ANO1 channels, and these findings may reveal a new mechanism of its anticancer effect.  相似文献   

6.
Low concentrations of cardiac glycosides including ouabain, digoxin, and digitoxin block cancer cell growth without affecting Na+,K+-ATPase activity, but the mechanism underlying this anti-cancer effect is not fully understood. Volume-regulated anion channel (VRAC) plays an important role in cell death signaling pathway in addition to its fundamental role in the cell volume maintenance. Here, we report cardiac glycosides-induced signaling pathway mediated by the crosstalk between Na+,K+-ATPase and VRAC in human cancer cells. Submicromolar concentrations of ouabain enhanced VRAC currents concomitantly with a deceleration of cancer cell proliferation. The effects of ouabain were abrogated by a specific inhibitor of VRAC (DCPIB) and knockdown of an essential component of VRAC (LRRC8A), and they were also attenuated by the disruption of membrane microdomains or the inhibition of NADPH oxidase. Digoxin and digitoxin also showed anti-proliferative effects in cancer cells at their therapeutic concentration ranges, and these effects were blocked by DCPIB. In membrane microdomains of cancer cells, LRRC8A was found to be co-immunoprecipitated with Na+,K+-ATPase α1-isoform. These ouabain-induced effects were not observed in non-cancer cells. Therefore, cardiac glycosides were considered to interact with Na+,K+-ATPase to stimulate the production of reactive oxygen species, and they also apparently activated VRAC within membrane microdomains, thus producing anti-proliferative effects.  相似文献   

7.
The Ca2+-activated Cl? channel ANO1 is widely expressed in epithelial cells, and ANO1 upregulation is implicated in the oncogenesis of many epithelium-originated cancers. However, whether ANO1 plays a causal role in the tumorigenesis of colorectal cancer remains largely unknown. Here, we show that ANO1 channel protein is upregulated in human colorectal cancer tissue samples and its upregulation is correlated with the TNM staging, histological type, pathological differentiation and poor prognosis. Knockdown or pharmacological inhibition of ANO1 suppresses colorectal cancer cell proliferation and induces cell apoptosis. Furthermore, ANO1 knockdown inhibits the growth of subcutaneous xenograft tumors implanted with colorectal cancer HT-29 cells in nude mice. Mechanically, knockdown of endogenous ANO1 inactivates the Wnt/β-catenin signaling through downregulating critical components, such as Frizzled protein 1, β-catenin and upregulating GSK3β. Taken together, our results demonstrate that ANO1 upregulation is involved in the tumorigenesis of colorectal cancer, and inhibition of ANO1 upregulation or inactivating downstream Wnt/β-catenin signaling may have therapeutic potential for colorectal cancer.  相似文献   

8.
Cytoskeletal network in colon cancer: from genes to clinical application   总被引:2,自引:0,他引:2  
Colorectal cancer arises from well-defined sequential steps characterised by distinct genetic events. Abnormalities in the expression and functional activity of cell adhesion molecules are implicated in the development and progression of the majority of colorectal cancers. Intercellular (e.g. E-cadherin/catenin complex) and cell-matrix (e.g. integrins) adhesion molecules are more than just cementing substances but regulate cell polarity, differentiation, proliferation, migration and invasion. Many of these cellular events are mediated through their intimate association with the actin cytoskeletal network. A dynamic actin cytoskeleton characterises normal epithelial cells and polymerisation and depolymerisation of actin filaments enables cell shape to change during migration and mitosis. In colorectal cancer, cells lose actin cytoskeletal organisation and normal cell adhesion when they become invasive. Future investigations should allow the unravelling of new cytoskeletal network functions in tumour biology and may lead to the development of novel therapeutic strategies based on the manipulation of its associated molecules.  相似文献   

9.
Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca2 +-activated Cl? channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl? channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl? channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.  相似文献   

10.
Head and neck squamous cell carcinoma (HNSCC) has the potential for early metastasis and is associated with poor survival. Ano1 (Dog1) is an established and sensitive marker for the diagnosis of gastrointestinal stromal tumors (GIST) and has recently been identified as a Ca(2+) activated Cl(-) channel. Although the ANO1 gene is located on the 11q13 locus, a region which is known to be amplified in different types of human carcinomas, a detailed analysis of Ano1 amplification and expression in HNSCC has not been performed. It is thus still unclear how Ano1 contributes to malignancy in HNSCC. We analyzed genomic amplification of the 11q13 locus and Ano1 together with Ano1-protein expression in a large collection of HNSCC samples. We detected a highly significant correlation between amplification and expression of Ano1 and showed that HNSCC patients with Ano1 protein expression have a poor overall survival. We further analyzed the expression of the Ano1 protein in more than 4'000 human samples from 80 different tumor types and 76 normal tissue types and detected that besides HNSCC and GISTs, Ano1 was rarely expressed in other tumor samples or healthy human tissues. In HNSCC cell lines, expression of Ano1 caused Ca(2+) activated Cl(-) currents, which induced cell motility and cell migration in wound healing and in real time migration assays, respectively. In contrast, knockdown of Ano1 did not affect intracellular Ca(2+) signaling and surprisingly did not reduce cell proliferation in BHY cells. Further, expression and activity of Ano1 strongly correlated with the ability of HNSCC cells to regulate their volume. Thus, poor survival in HNSCC patients is correlated with the presence of Ano1. Our results further suggest that Ano1 facilitates regulation of the cell volume and causes cell migration, which both can contribute to metastatic progression in HNSCC.  相似文献   

11.
Lysophospholipid mediators of immunity and neoplasia   总被引:7,自引:0,他引:7  
Lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P) and some other structurally related lysophospholipids are active growth factors and stimuli for diverse cellular functions. LPA and S1P promote early T cell migration to tissue sites of immune responses and regulate T cell proliferation and secretion of numerous cytokines. Edg-4 (LPA2) LPA receptors, which are constitutively expressed by helper T cells, and Edg-2 (LPA1) LPA receptors, which are expressed only by activated helper T cells, transduce opposite effects of LPA on some T cell responses. A similar mechanism is observed for fine regulation of Edg R-mediated effects of LPA on ovarian cancer cells. Edg-4 (LPA2) R transduces proliferative responses, recruitment of autocrine protein growth factors, and migration of ovarian cancer cells, whereas Edg-2 (LPA1) R transduces inhibition of Edg-4 (LPA2) R-mediated responses and concurrently elicits apoptosis and anoikis of ovarian cancer cells. Edg-4 (LPA2) R is a distinctive functional marker for ovarian carcinoma, and is expressed both as the wild-type and a carboxyl-terminally extended gain-of-function mutant. Newly discovered non-lipid agonists and antagonists for individual Edg receptors will permit more sophisticated analyses of their respective contributions in human biology and pathophysiology, and may represent novel therapeutic modalities in immune disorders and cancer.  相似文献   

12.
Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future.  相似文献   

13.
In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.  相似文献   

14.
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.  相似文献   

15.
Disheveled-associated antagonist of β-catenin (DACT), which ubiquitously expressed in human tissue, is critical for regulating cell proliferation and several developmental processes in different cellular contexts. In addition, DACT is essential for some other cellular processes, such as cell apoptosis, migration and differentiation. Given the importance of DACT in these cellular processes, many scientists are gradually interested in studying the role of DACT in tumorigenesis and cancer progression. This review article focuses on the latest research regarding the essential functions and potential DACT mechanisms in the occurrence and progression of tumors. Our study indicates that DACT may act as a tumor biomarker for cancer diagnosis and prognosis, as well as a promising therapeutic target in cancers.  相似文献   

16.
Recently, many researches have reported that antibiotic tigecycline has significant effect on cancer treatment. However, biomedical functions and molecular mechanisms of tigecycline in human pancreatic ductal adenocarcinoma (PDAC) remain unclear. In the current study, we tried to assess the effect of tigecycline in PDAC cells. AsPC-1 and HPAC cells were treated with indicated concentrations of tigecycline for indicated time, and then, MTT, BrdU and soft agar assay were used to test cell proliferation. The effect of tigecycline on cell cycle and cellular apoptosis was tested by cytometry. Migration and invasion were detected by wound healing assay and transwell migration/invasion assay. Expressions of cell cycle-related and migration/invasion-related protein were determined by using Western blot. The results revealed that tigecycline observably suppressed cell proliferation by inducing cell cycle arrest at G0/G1 phase and blocked cell migration/invasion via holding back the epithelial-mesenchymal transition (EMT) process in PDAC. In addition, tigecycline also remarkably blocked tumorigenecity in vivo. Furthermore, the effects of tigecycline alone or combined with gemcitabine in vitro or on PDAC xenografts were also performed. The results showed that tigecycline enhanced the chemosensitivity of PDAC cells to gemcitabine. Interestingly, we found CCNE2 expression was declined distinctly after tigecycline treatment. Then, CCNE2 was overexpressed to rescue tigecycline-induced effect. The results showed that CCNE2 overexpression significantly rescued tigecycline-inhibited cell proliferation and migration/invasion. Collectively, we showed that tigecycline inhibits cell proliferation, migration and invasion via down-regulating CCNE2, and tigecycline might be used as a potential drug for PDAC treatment alone or combined with gemcitabine.  相似文献   

17.
Calcium-activated chloride channels (CaCCs) are ion channels with key roles in physiological processes. They are abnormally expressed in various cancers, including esophageal squamous cell cancer, head and neck squamous cell carcinoma, colorectal cancer, and gastrointestinal stromal tumors. The CaCC component TMEM16A/ANO1 was recently shown to be overexpressed in lung adenocarcinoma cells and may serve as a tumorigenic protein. In this study, we determined that matrine is a potent TMEM16A inhibitor that exerts anti-lung adenocarcinoma effects. Patch clamp experiments showed that matrine inhibited TMEM16A current in a concentration-dependent manner with an IC 50 of 27.94 ± 4.78 μM. Molecular simulation and site-directed mutation experiments demonstrated that the matrine-sensitive sites of the TMEM16A channel involve the amino acids Y355, F411, and F415. Results of cell viability and wound healing assays showed that matrine significantly inhibited the proliferation and migration of LA795 cells, which exhibit high TMEM16A expression. In contrast, matrine has only weak inhibitory effect on CCD-19Lu and HeLa cells lacking TMEM16A expression. Matrine-induced effects on the proliferation and migration of LA795 cells were abrogated upon shRNA-mediated TMEM16A knockdown in LA795 cells. Finally, in vivo experiments demonstrated that matrine dramatically inhibited the growth of lung adenocarcinoma xenograft tumors in mice but did not affect mouse body weight. Collectively, these data indicate that matrine is an effective and safe TMEM16A inhibitor and that TMEM16A is the target of matrine anti-lung adenocarcinoma activity. These findings provide new insight for the development of novel treatments for lung adenocarcinoma.  相似文献   

18.
Ca(2+)-activated Cl(-) channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3-7 in HEK293 cells did not generate Cl(-) currents activated by intracellular Ca(2+), as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease.  相似文献   

19.
Ska2(spindle and kinetochore associated complex subunit2),又称FAM33A(family with sequence similarity33,member A),是新近发现的一个与细胞周期调控和肿瘤发生发展紧密相关的基瓯且与该团队前期发现的新基NPRR11(proline rich 11)共享一个双向启动子。但是,Ska2在肺癌中的具体作用和分子机制仍不清楚。该研究选用肺癌细胞系H1299,采用RNAi技术构建Ska2基因沉默的稳定细胞株,并进行了细胞表型和潜在分子机制分析。RT-PCR和Western blot结果表明,Ska2在mRNA和蛋白质水平上的表达均被有效抑制。细胞增殖、细胞迁移和侵袭实验结果表明,与对照细胞相比,Ska2基因沉默稳定细胞株的细胞增殖能力、细胞迁移和侵袭能力均显著降低。此外,Ska2基因被沉默后,CCNA1基因的表达显著下调。该研究的结果提示,Ska2与其对侧基因PRR11的功能高度相关,可能与PRR11共同参与肺癌细胞增殖、迁移和侵袭行为的调节。  相似文献   

20.
An attractive possibility to treat Cystic Fibrosis (CF), a severe condition caused by dysfunctional CFTR, an epithelial anion channel, is through the activation of alternative (non-CFTR) anion channels. Anoctamin 1 (ANO1) was demonstrated to be a Ca2+-activated chloride channel (CaCC) and thus of high potential to replace CFTR. Despite that ANO1 is expressed in human lung CF tissue, it is present at the cell surface at very low levels. In addition, little is known about regulation of ANO1 traffic, namely which factors promote its plasma membrane (PM) localization.Here, we generated a novel cellular model, expressing an inducible 3HA-ANO1-eGFP construct, and validated its usage as a microscopy tool to monitor for ANO1 traffic.We demonstrate the robustness and specificity of this cell-based assay, by the identification of siRNAs acting both as ANO1 traffic enhancer and inhibitor, targeting respectively COPB1 and ESYT1 (extended synaptotagmin-1), the latter involved in coupling of the endoplasmic reticulum to the PM at specific microdomains. We further show that knockdown of ESYT1 (and family members ESYT2 and ESYT3) significantly decreased ANO1 current density.This ANO1 cell-based assay constitutes an important tool to be further used in high-throughput screens and drug discovery of high relevance for CF and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号