首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various detergents and pH on the interfacial binding and activity of two fungal lipases from Yarrowia lipolytica (YLLIP2) and Thermomyces lanuginosus (TLL) were investigated using trioctanoin emulsions as well as monomolecular films spread at the air-water interface. Contrary to TLL, YLLIP2 was found to be more sensitive than TLL to interfacial denaturation but it was protected by detergent monomers and lowering the temperature. At pH 7.0, both the interfacial binding and the activities on trioctanoin of YLLIP2 and TLL were inhibited by sodium taurodeoxycholate (NaTDC). At pH 6.0, however, YLLIP2 remained active on trioctanoin in the presence of NaTDC, whereas TLL did not. YLLIP2 activity on trioctanoin was associated with strong interfacial binding of the enzyme to trioctanoin emulsion, whereas TLL was mostly detected in the water phase. The combined effects of bile salts and pH on lipase activity were therefore enzyme-dependent. YLLIP2 binds more strongly than TLL at oil-water interfaces at low pH when detergents are present. These findings are particularly important for lipase applications, in particular for enzyme replacement therapy in patients with pancreatic enzyme insufficiency since high detergent concentrations and highly variable pH values can be encountered in the GI tract.  相似文献   

2.
The inhibitory effects of tetrahydrolipstatin (THL) on the hydrolytic activity of human pancreatic lipase (HPL) and T. lanuginosa lipase (TLL) on various lipidic substrates ‘poisoned’ with THL as previously described was studied, using either the pH-stat, monomolecular film or oil drop technique.Prior to adding lipase (method C), an ethanolic solution of THL was injected in a tributyrin (TC4) or a purified soybean oil (PSO) emulsion prepared in a pH-stat vessel. Under these conditions, THL was found to be a potent HPL inhibitor. After being dissolved in the pure triglyceride phase (method D), THL also strongly inhibited HPL. However, with TC4 as substrate TLL was efficiently inhibited by THL only when method C was used and not method D. The very different inhibitory effects on HPL and TLL recorded with method D and PSO as substrate were confirmed using the monomolecular film and oil drop techniques.With a monomolecular film of dicaprin (di-C10) as substrate, 1 molecule of THL embedded in 400 000 molecules of di-C10 sufficed to reduce the HPL activity to half of its initial value.HPL was therefore efficiently inhibited by THL with all the methods and substrates tested here. Paradoxically, TLL was inhibited by THL molecules transiently present in the aqueous phase and not by the THL molecules present at the triglyceride/water interface. It should therefore be stressed that the inhibitory effects of THL on each lipase depend strongly on the method and the substrate used.  相似文献   

3.
Candida antarctica lipase B (CALB) and Thermomyces lanuginosa lipase (TLL) were evaluated as catalysts in different reaction media using hydrolysis of tributyrin as model reaction. In o/w emulsions, the enzymes were used in the free form and for use in monophasic organic media, the lipases were adsorbed on porous polypropylene (Accurel EP-100). In monophasic organic media, the highest specific activity of both lipases was obtained in pure tributyrin at a water activity of >0.5 and at an enzyme loading of 10 mg/g support. With tributyrin emulsified in water, the specific activities were 2780 micromol min(-1) mg(-1) for TLL and 535 micromol min(-1) mg(-1) for CALB. Under optimal conditions in pure tributyrin, CALB expressed 49% of the activity in emulsion (264 micromol min(-1) mg(-1)) while TLL expressed only 9.2% (256 micromol min(-1) mg(-1)) of its activity in emulsion. This large decrease is probably due to the structure of TLL, which is a typical lipase with a large lid domain. Conversion between open and closed conformers of TLL involves large internal movements and catalysis probably requires more protein mobility in TLL than in CALB, which does not have a typical lid region. Furthermore, TLL lost more activity than CALB when the water activity was reduced below 0.5, which could be due to further reduction in protein mobility.  相似文献   

4.
Hydrolysis of the emulsified mixture of short-chain triacylglycerols by porcine pancreatic lipase in the presence of procolipase and micellar sodium taurodeoxycholate has been studied. Increase in the content of tributyrin and trioctanoin in the mixture with triacetin had highly cooperative effects on the formation of the interfacial lipase procolipase complex. Abrupt enhancement of the complex stability was observed in the presence of 0.4-0.6 mol mol-1 of tributyrin or 0.58 mol mol-1 of trioctanoin in the substrate phase. The affinity of lipase towards interfacially bound procolipase for the trioctanoin containing 0.07-0.42 mol mol-1 of triacetin was approximately three times higher than that for pure trioctanoin. The cooperative processes involved in complex formation did not contribute to the affinity of the interfacial lipase/(pro)colipase complex towards substrate molecules and its catalytic activity.  相似文献   

5.
The unripe fruit of babaco (Vasconcellea × heilbornii; syn. Carica pentagona) contains a latex, similar to that in Carica papaya, which exhibits lipolytic activity. Herein, the regioselectivity, stereoselectivity and typoselectivity in both hydrolysis and acyltransfer reactions of babaco latex lipases were studied and compared to those of Carica papaya latex. In hydrolysis, both biocatalysts are 1,3-regioselective with ratios for 1,2-2,3-diacylglycerols/1,3-diacylglycerol of 6.5 and 21 for babaco and papaya, respectively. In contrast, papaya latex had a slight sn-3 stereopreference. Babaco latex displayed a higher activity on triacylglycerols with short chain and unsaturated fatty acids  相似文献   

6.
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with κ-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HAapp) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g−1 of gel for GLU, 7.76 mg g−1 of gel for GLY, and 7.65 mg g−1 of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g−1 of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.  相似文献   

7.
Latex from Caricaceae has been known since 1925 to contain strong lipase activity. However, attempts to purify and identify the enzyme were not successful, mainly because of the lack of solubility of the enzyme. Here, we describe the characterization of lipase activity of the latex of Vasconcellea heilbornii and the identification of a putative homologous lipase from Carica papaya. Triacylglycerol lipase activity was enriched 74-fold from crude latex of Vasconcellea heilbornii to a specific activity (SA) of 57 μmol·min(-1)·mg(-1) on long-chain triacylglycerol (olive oil). The extract was also active on trioctanoin (SA = 655 μmol·min(-1)·mg(-1) ), tributyrin (SA = 1107 μmol·min(-1)·mg(-1) ) and phosphatidylcholine (SA = 923 μmol·min(-1)·mg(-1) ). The optimum pH ranged from 8.0 to 9.0. The protein content of the insoluble fraction of latex was analyzed by electrophoresis followed by mass spectrometry, and 28 different proteins were identified. The protein fraction was incubated with the lipase inhibitor [(14) C]tetrahydrolipstatin, and a 45 kDa protein radiolabeled by the inhibitor was identified as being a putative lipase. A C. papaya cDNA encoding a 55 kDa protein was further cloned, and its deduced sequence had 83.7% similarity with peptides from the 45 kDa protein, with a coverage of 25.6%. The protein encoded by this cDNA had 35% sequence identity and 51% similarity to castor bean acid lipase, suggesting that it is the lipase responsible for the important lipolytic activities detected in papaya latex.  相似文献   

8.
Cross-linked enzyme aggregates (CLEAs) of lipase from Thermomyces lanuginosa (TLL) were synthesized using (NH4)2SO4 as precipitant and glutaraldehyde as cross-linking agent. CLEAs were assayed for their hydrolytic activity in a reaction performed in an emulsioned medium. The effects of the amount of precipitant, cross-linker, and different additives such as protein cofeeder, oleic acid, n-heptane, sodium dodecyl sulfate (SDS), polyethylenglicol (PEG) and ethylendiamine were studied at selected ratios with respect to TLL mass. Traditional non-layered CLEAs of TLL showed recovered activities between 3 and 31% when compared with native lipase. Novel TLL layered CLEAs consisting of a protein cofeeder core and successive layers of target lipase showed an important increase in their retained activity. The highest recovered activity was found for the one-layered non-additivated CLEAs of TLL which showed a recovered activity of 75%.  相似文献   

9.
The present study reports the improved enzymatic synthesis of ethyl valerate (green apple flavor) by esterification reaction of ethanol and valeric acid in heptane medium. Lipase from Thermomyces lanuginosus (TLL) was immobilized by physical adsorption on polyhydroxybutyrate (PHB) particles and used as a potential biocatalyst. The effect of certain parameters that influence the ester synthesis was evaluated by factorial design. The experimental conditions that maximized the synthesis of ethyl valerate were 30.5°C, 18% m/v of biocatalyst (TLL–PHB), absence of molecular sieves, agitation of 234?rpm, and 1,000?mM of each reactant (ethanol and valeric acid). Under these conditions, conversion percentage ≈92% after 105?min of reaction was observed. Soluble TLL was also used as biocatalyst and the highest conversion was of 82% after 120?min of reaction. Esterification reaction performed in a solvent-free system exhibited conversion of 13% after 45?min of reaction catalyzed by immobilized lipase, while the soluble lipase did not exhibit catalytic activity. The synthesis of the ester was confirmed by Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry analyses. After six consecutive cycles of ethyl valerate synthesis, the prepared biocatalyst retained ≈86% of its original activity.  相似文献   

10.
An intracellular glycerol ester hydrolase (lipase) from Propionibacterium shermanii was recovered from cell-free extracts and purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on diethylaminoethylcellulose. Maximum enzyme activity was observed at pH 7.2 and 47 C when an emulsion of tributyrin was used as substrate. The enzyme was stable between pH 5.5 and 8. Heating the enzyme solution at 45 C for 10 min resulted in a 75% decrease in activity. Maximum rate of hydrolysis of triglycerides was observed on tripropionin, followed in order by tributyrin, tricaproin, and tricaprylin. The lipase was strongly inhibited by mercury and arsenicals, but specific sulfhydryl reagents had little or no inhibiting effect on the enzyme activity. The enzyme also showed some esterase activity, but the hydrolysis of substrates in solution was small as compared to the hydrolysis of substrates in emulsion.  相似文献   

11.
Microbial lipase preparations from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) were immobilized by multipoint covalent attachment on Toyopearl AF-amino-650M resin and the most active and thermal stable derivatives used to catalyze the transesterification reaction of babassu and palm oils with ethanol in solvent-free media. For this, different activating agents, mainly glutaraldehyde, glycidol and epichlorohydrin were used and immobilization parameters were estimated based on the hydrolysis of olive oil emulsion and butyl butyrate synthesis. TLL immobilized on glyoxyl-resin allowed obtaining derivatives with the highest hydrolytic activity (HAder) and thermal stability, between 27 and 31 times more stable than the soluble lipase. Although PFL derivatives were found to be less active and thermally stables, similar formation of butyl butyrate concentrations were found for both TLL and PFL derivatives. The highest conversion into biodiesel was found in the transesterification of palm oil catalyzed by both TLL and PFL glyoxyl-derivatives.  相似文献   

12.
Isolated Thermomyces lanuginosus lipase (TLL) was immobilized by different protocols on the polyacrylonitrile nanofibers membrane. The conditions for immobilization of TLL were optimized by investigating effect of protein concentration, time and temperature on the extent of immobilization. The effect of immobilization on the catalytic activity and stability of lipase was studied thoroughly. The immobilized TLL was used as biocatalyst for geranyl acetate synthesis with geraniol and vinyl acetate as substrates and their performance was compared with free enzyme. The TLL immobilized by physical adsorption shows higher transesterification and hydrolytic activities than that of covalently linked or native TLL. There was 32 and 9 fold increase in transesterification activity of TLL immobilized by adsorption and covalent bonding, while hydrolytic activity increases only by 3.6 and 1.8 fold respectively. The optimum conditions for immobilization in both the cases were immobilization time 90–150 min, temperature 45 °C and protein concentration of 2 mg/ml. The percentage conversion of ester was more than 90% and 66% in case of physically adsorbed and covalently bonded enzyme respectively as compared to native one. However, covalently immobilized TLL shows higher operational stability than native and physically adsorbed TLL.  相似文献   

13.
Summary The intracellular lipase from a strain of Lactobacillus brevis was partially purified and properties of the enzyme studied. Of the simple triglycerides, tripropionin was hydrolysed most easily by the enzyme as compared to others such as tributyrin, tricaproin and tricaprylin. Of the natural triglycerides such as butter oil and coconut oil, the former was degraded more readily than the latter. Among unsaturated triglycerides, the enzyme preferentially hydrolysed triolein as compared to olive oil. Highest enzymatic activity was observed at 30° C after 3.5 h incubation at pH 6.5. Salts of manganese, magnesium, sodium and calcium stimulated lipase activity while silver, mercury and Zinc were inhibitory. The enzyme was completely inactivated at 62.8° C after 30 min and at 71.7° C after 16 sec.  相似文献   

14.
Because of the broad versatility of lipases as biocatalysts, interest has for some years been focused on the improvement of the economy of processes using these enzymes, especially by appropriate immobilisation. In this study, a method was developed to emulsify aqueous solutions of lipase A of Candida antarctica (CALA) and lipase of Thermomyces lanuginosa (TLL) in silicone elastomers yielding elastic beads. The persistent water-organic interface created by this static emulsion enabled an improved performance of the immobilised lipases due to the well known fact that from a kinetic point of view these enzymes show a higher efficiency in biphasic than in monophasic systems. The entrapped lipases catalysed the esterification of octanol and caprylic acid in hexane with an activity that, related to the free enzyme, was enhanced about 31-fold for CALA and 250-fold for TLL. Comparison to the activity of the same enzymes in sol–gels revealed that for CALA immobilisation in static emulsion was the only method yielding active biocatalysts, whereas activation of TLL was in the same range in static emulsion and sol–gels. However, apparent activity of TLL in static emulsion was considerably higher than in sol–gels due to the feasible high enzyme loading. The results indicate that immobilising lipases as static emulsion is a technique suitable for biotechnological application. Moreover, a transfer to enzymes of other classes seems possible.  相似文献   

15.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

16.
Abstract

Reactions involving tert-alcohols and their esters are generally not catalyzed by lipases. Candida rugosa lipase is one of the few lipases which shows at least limited catalytic activity towards tert-alcohols and their esters. Using transesterification of tributyrin with tertiary butyl and amyl alcohols as a model reaction, it is shown that precipitation of lipase by a tertiary alcohol in the presence of a buffer with optimum concentration enhances the catalytic activity 7 fold as compared to rates obtained with lyophilized powders. Optimization of the ratio of triglyceride to tert-alcohols and medium engineering gave an initial rate which was 41 times higher than that obtained with lyophilized powders. Hence, use of a simple enzyme formulation, coupled with optimization of reaction conditions led to Candida rugosa lipase becoming a useful catalyst for catalyzing transesterification involving tertiary alcohols.  相似文献   

17.
Lipolase and Lipozyme are produced in large quantities (as a result of genetic engineering and overexpression) for the detergents market and provide a cheap source of highly active biocatalysts. Humicola lanuginosa lipase (HIL) and Rhizomucor miehei lipase (RmL) have been isolated in partially purified form from commercial preparations of Lipolase and Lipozyme, respectively. These lipases were solubilized in Aerosol-OT (AOT)-stabilized water-in-oil (w/o) microemulsions in n-heptane. HIL and RmL activity in these microemulsions was assayed by spectrophotometric measurement of the initial rate of p-nitophenyl butyrate hydrolysis, and by chromatographic determination of the initial rate of octyl decanoate synthesis from 1-octanol and decanoic acid. The hydrolytic activity of HIL in microemulsions measured as a function of buffer pH prior to dispersal, followed a sigmoidal profile with the highest activities observed at alkaline pHs. This broadly matches the pH-activity profile for tributyrin hydrolysis by Lipolase in an aqueous emulsion assay. The hydrolytic activity of RmL in the same microemulsions, measured as a function of pH, gave a bell-shaped profile with a maximum activity at pH 7.5. Again, the observed pH-activity profile was similar to that reported for a purified RmL in a tributyrin-based aqueous emulsion assay. In contrast, the esterification activity exhibited by both HIL and RmL in AOT microemulsions over the available range pH 6.1 to 10.4, decreases as the pH increases, most likely reflecting the effect of substrate ionization. The dependence of the hydrolytic and condensation activity of HIL on R, the mole ratio of water to surfactant, were similar with both profiles exhibiting a maximum at R = 5. The hydrolytic and esterification activities of RmL followed similar R-dependent profiles, but the profiles in this case exhibited a maximum at R = 10. The water activities at these R values were directly measured as 0.78 and 0.9, respectively. Measured water activities were unperturbed by the presence of lipase at the concentrations used in these studies. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
A Sayari  N Agrebi  S Jaoua  Y Gargouri 《Biochimie》2001,83(9):863-871
Staphylococcus simulans strain secretes a non-induced lipase in the culture medium. Staphylococcus simulans lipase (SSL), purified to homogeneity, is a tetrameric protein (160 kDa) corresponding to the association of four lipase molecules. The 30 N-terminal amino acid residues were sequenced. This sequence is identical to the one of Staphylococcus aureus PS54 lipase (SAL PS54) and exhibits a high degree of homology with Staphylococcus aureus NCTC8530 lipase (SAL NCTC8530), Staphylococcus hyicus lipase (SHL) and Staphylococcus epidermis RP62A lipase (SEL RP62A) sequences. But the cloning and sequencing of the part of the gene encoding the mature lipase show some differences from SAL PS54 sequence, which suggest that it is a new sequence. The lipase activity was maximal at pH 8.5 and 37 degrees C. SSL is able to hydrolyze triacylglycerols without chain length specificity. A specific activity of about 1000 U/mg was measured on tributyrin or triolein as substrate at 37 degrees C and at pH 8.5 in the presence of 3 mM CaCl(2). In contrast to other staphylococcal lipases previously characterized, Ca(2+) is not required to express the activity of SSL. SSL was found to be stable between pH 4 and pH 9. The enzyme is inactivated after a few minutes when incubated at 60 degrees C. Using tripropionin as substrate, SSL does not present the interfacial activation phenomenon. In contrast to many lipases, SSL is able to hydrolyze its substrate in the presence of bile salts or amphiphilic proteins.  相似文献   

19.
To differentiate esterases from lipases at the structure–function level, we have compared the kinetic properties and structural features of sequence-related esterase 1 from rabbit liver (rLE) and bile-salt-activated lipase from bovine pancreas (bBAL). In contrast to rLE, bBAL hydrolyses water-insoluble medium and long chain esters as vinyl laurate, trioctanoin and olive oil. Conversely, rLE and bBAL are both active on water-soluble short chain esters as vinyl acetate, vinyl propionate, vinyl butyrate, tripropionin, tributyrin and p-nitrophenyl butyrate. However, the enzymes show distinctive kinetic behaviours. rLE displays maximal activity at low substrate concentration, below the critical micelle concentration, whereas bBAL acts preferencially on emulsified esters, at concentration exceeding the solubility limit. Comparison of the 3D structures of rLE and bBAL shows, in particular, that the peptide loop at positions 116–123 in bBAL is deleted in rLE. This peptide segment interacts with a bile salt molecule thus inducing a conformational transition which gives access to the active site. Inhibition studies and manual docking of a bulky ester molecule as vinyl laurate in the catalytic pocket of rLE and bBAL show that the inability of the esterase to hydrolyse large water-insoluble esters is not due to steric hindrance. It is hypothesized that esterases lack specific hydrophobic structures involved both in the stabilization of the lipase–lipid adsorption complex at interfaces and in the spontaneous transfer of a single substrate molecule from interface to the catalytic site.  相似文献   

20.
Extracellular bacterial lipases are promising biocatalysts for industry, because they are stable and active enzymes from easily available sources. A lipase from Bacillus stearothermophilus MC7 was immobilized on four polymer carriers by physical adsorption: chitosan, DEAE-cellulose, polypropylene, and polyurethane. The four biocatalysts differ in their hydrolytic activity against long-chain and short-chain triglycerides. Lipase MC7 immobilized on polypropylene (PP-MC7) stands out with its high activity against tributirin. According to the preliminary data, all four preparations were suitable for application in the test reaction of acidolysis of triolein with caprylic acid. The highest degree of conversion of the initial triolein was achieved in the presence of PP-MC7 preparation—50%. But variation of the reaction conditions did not lead to synthesis of the target di-substituted product (dicapryloyl-oleoylglycerol, COC). Reaction proceeds as a selective mono-substitution in the glycerol backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号