首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Degradation of extracellular matrix proteins by proteases such as the cysteine protease cathepsin B is critical to malignant progression. We have established that procathepsin B presents on the surface of tumor cells through its interaction with the annexin II tetramer [Mai et al., J. Biol. Chem. 275 (2000),12806-12812]. Cathepsin B activity can also be detected on the tumor cell surface and in their culture medium. Interestingly, the annexin II tetramer also interacts with extracellular matrix proteins, such as collagen I, fibrin and tenascin-C. Both cathepsin B and tenascin-C are expressed at high levels in malignant tumors, especially at the invasive edges of tumors, and are implicated in tumor angiogenesis. In this study, we report that tenascin-C can be degraded by cathepsin B in vitro. We demonstrate by immunohistochemistry that both cathepsin B and tenascin-C are expressed highly in malignant anaplastic astrocytomas and glioblastomas as compared to normal brain tissues. Interestingly, cathepsin B and tenascin-C were also detected in association with tumor neovessels. We suggest that interactions between cathepsin B and tenascin-C are involved in the progression of gliomas including the angiogenesis that is a hallmark of anaplastic astrocytomas.  相似文献   

2.
Tenascin-C is a multidomain large extracellular matrix glycoprotein composed of six monomers. The size of tenascin-C monomers (180-250 kDa) varies as a result of an alternative splicing of the fibronectin repeats at the pre-mRNA level. For the first time we applied bioinformatic and molecular modeling procedures, for detailed analysis of the organization of tenascin-C and we performed bioinformatic analysis of tenascin-C gene. We detected the presence of heat shock protein 33 in the tenascin-C N-terminal domain that may suggest its role in the protein-protein interactions and stress response. The number of fibronectin type III-like repeats and epidermal growth factor-like repeats were corrected to 15 and 14, respectively. Using polyactylamide gel electophoresis, RT/PCR analysis and microarrays data, we showed the higher level of tenascin-C in the human tumor tissues: brain, intestine and breast. These results suggested a new role of tenascin-C as the potential tumor marker and drug target.  相似文献   

3.
Cardiovascular diseases are accompanied by changes in the extracellular matrix (ECM) including the re-expression of fibronectin and tenascin-C splicing variants. Using human recombinant small immunoprotein (SIP) format antibodies, a molecular targeting of these proteins is of therapeutic interest. Tissue samples of the right atrial auricle from patients with coronary artery disease and valvular heart disease were analysed by PCR based ECM gene expression profiling. Moreover, the re-expression of fibronectin and tenascin-C splicing variants was investigated by immunofluoerescence labelling. We demonstrated changes in ECM gene expression depending on histological damage or underlying cardiac disease. An increased expression of fibronectin and tenascin-C mRNA in association to histological damage and in valvular heart disease compared to coronary artery disease could be shown. There was a distinct re-expression of ED-A containing fibronectin and A1 domain containing tenascin-C detectable with human recombinant SIP format antibodies in diseased myocardium. ED-A containing fibronectin showed a clear vessel positivity. For A1 domain containing tenascin-C, there was a particular positivity in areas of interstitial and perivascular fibrosis. Right atrial myocardial tissue is a valuable model to investigate cardiac ECM remodelling. Human recombinant SIP format antibodies usable for an antibody-mediated targeted delivery of drugs might offer completely new therapeutic options in cardiac diseases.  相似文献   

4.
Sulfatide is a glycosphingolipid known to interact with several extracellular matrix proteins, such as tenascin-C which is overexpressed in many types of cancer including that of the colon. In view of the limited success of chemotherapy in colorectal cancer and high toxicity of doxorubicin (DOX), a sulfatide-containing liposome (SCL) encapsulation approach was taken to overcome these barriers. This study assessed the in vitro cytotoxicity, biodistribution, therapeutic efficacy and systemic toxicity in vivo of sulfatide-containing liposomal doxorubicin (SCL-DOX) using human colonic adenocarcinoma HT-29 xenograft as the experimental model. In vitro, SCL-DOX was shown to be delivered into the nuclei and displayed prolonged retention compared with the free DOX. The use of this nanodrug delivery system to deliver DOX for treatment of tumor-bearing mice produced a much improved therapeutic efficacy in terms of tumor growth suppression and extended survival in contrast to the free drug. Furthermore, treatment of tumor-bearing mice with SCL-DOX resulted in a lower DOX uptake in the principal sites of toxicity of the free drug, namely the heart and skin, as well as reduced myelosuppression and diminished cardiotoxicity. Such natural lipid-guided nanodrug delivery systems may represent a new strategy for the development of effective anticancer chemotherapeutics targeting the tumor microenvironment for both primary tumor and micrometastases.  相似文献   

5.
Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.  相似文献   

6.
The prominent expression of tenascin-C in the stroma of most solid tumors, first observed in the mid 1980s, implicates tenascin-C in tumorigenesis. This is also supported by in vitro experiments that demonstrate the capacity of tenascin-C to stimulate tumor growth by various mechanisms including promotion of proliferation, escaping immuno-surveillance and positively influencing angiogenesis. However, tumorigenesis in tenascin-C knock-out mice is not significantly different from that observed in control animals. Perhaps this is not unexpected if one considers that tenascin-C may act as an oncogene. The potential role of tenascin-C in tumorigenesis through its oncogenic action on cellular signaling will be discussed in this review, including how tenascin-C mediated tumor cell detachment might affect genome stability.  相似文献   

7.
8.
Tenascin-C is an extracellular matrix glycoprotein with trophic and repulsive properties, involved in migratory processes in CNS. Previous reports demonstrated that this molecule is produced and secreted by astrocytes. Preliminary data on fibroblasts and astrocytes have suggested that bFGF may modulate tenascin-C expression. bFGF is a mitogenic growth factor, involved in cell differentiation and neovascularization. In the present study, we ex amined whether bFGF modulates the expression of tenascin-C in hippocampal astrocytes from newborn rats. Our results suggest that bFGF increases the production of tenascin-C by cultured hippocampal astrocytes. We found that both tenascin-C mRNA and protein immunoreactivity were increased after bFGF treatment. Our results also demonstrated that tenas cin-C polypeptides were secreted into the extracellular medium. In agreement with previous studies, we suggest that secreted tenascin-C is mainly the high molecular weight form. In addition, our results suggest that a cleavage of the high molecular weight form may occur in the extracellular medium causing production of proteolytic fragments, that may modify the biological properties of tenascin-C. The present results may be relevant to the understanding of lesion scarring and regeneration process.  相似文献   

9.
Identification of a tumor angiogenesis specific ligand would allow targeting of tumor vasculature. Lipidic vehicles can be used to deliver therapeutic agents for treatment of disease or contrast agents for molecular imaging. A targeting ligand would allow specific delivery of such formulations to angiogenic sites, thereby reducing side effects and gaining efficiency. Anginex, a synthetic 33-mer angiostatic peptide, has been described to home angiogenically activated endothelium, suggesting an ideal candidate as targeting ligand. To investigate this application of anginex, fluorescently labeled paramagnetic liposomes were conjugated with anginex. Using phase contrast and fluorescence microscopy as well as magnetic resonance imaging (MRI), we demonstrate that anginex-conjugated liposomes bind specifically to activated endothelial cells, suggesting application as an angiogenesis targeting agent for molecular targeting and molecular imaging of angiogenesis-dependent disease.  相似文献   

10.
The role of tenascin-C in tissue injury and tumorigenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.  相似文献   

11.
Probstmeier  R; Pesheva  P 《Glycobiology》1999,9(2):101-114
We have previously shown that the extracellular matrix molecule tenascin-C inhibits fibronectin-mediated cell adhesion and neurite outgrowth by an interaction with a cellular RGD-independent receptor which interferes with the adhesion and neurite outgrowth promoting activities of the fibronectin receptor(s). Here we demonstrate that the inhibitory effect of tenascin-C on beta1integrin-dependent cell adhesion and neurite outgrowth is mediated by the interaction of the protein with membrane-associated disialogangliosides, which interferes with protein kinase C-related signaling pathways. First, in substratum mixtures with fibronectin, an RGD sequence-containing fragment of the molecule or synthetic peptide, tenascin-C inhibited cell adhesion and spreading by a disialoganglioside-dependent, sialidase-sensitive mechanism leading to an inhibition of protein kinase C. Second, the interaction of intact or trypsinized, i.e., cell surface glycoprotein- free, cells with immobilized tenascin-C was strongly inhibited by gangliosides or antibodies to gangliosides and tenascin-C. Third, preincubation of immobilized tenascin-C with soluble disialogangliosides resulted in a delayed cell detachment as a function of time. Similar to tenascin-C, immobilized antibody to GD2 (3F8) or sphingosine, a protein kinase C inhibitor, strongly inhibited RGD- dependent cell spreading. Finally, the degree of tenascin-C-induced inhibition of cell adhesion was proportional to the degree of disialoganglioside levels of expression by different cells suggesting the relevance of such mechanism in modulating integrin-mediated cell- matrix interactions during pattern formation or tumor progression.   相似文献   

12.
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.  相似文献   

13.
Emerging data suggest that primary dysfunction in the tumor microenvironment is crucial for carcinogenesis. These recent findings make a compelling case for targeting the milieu for cancer chemoprevention as well as therapy. The stroma is an integral part of its physiology, and functionally, one cannot totally dissociate the tumor surrounding from the tumor cells. A thorough understanding of the tumor and stroma will aid us in developing new treatment targets. In this review, we shed light at the key aspects of the carcinogenic process and how oxidative stress and inflammation contribute to this process. We dissect the connection between metastasis and oxidative stress and focus on the key players in the tumor microenvironment that leads to inflammation, oxidative stress and DNA damage. Moreover, we consider the role of inflammation in disease, specifically cancer and metastasis. Finally, we discuss the potential applications in prognosis and cancer treatment.  相似文献   

14.
Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.  相似文献   

15.
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell(CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryoniclike stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.  相似文献   

16.
The role of tenascin-C in adaptation of tendons to compressive loading   总被引:3,自引:0,他引:3  
Although most tendon regions are subjected primarily to high tensile loads, selected regions, primarily those that directly contact bones that change the direction of the tendon, must withstand high compressive loads as well. Compressed tendon regions differ from regions subjected to primarily tensile loads: they have a fibrocartilaginous structure with spherical cells surrounded by a matrix containing aggrecan and collagen types I and II, in contrast regions not exposed to compression have a fibrous structure with spindle shaped fibroblasts surrounded by a matrix of dense, longitudinally oriented type I collagen fibrils. The spherical shape of cells in fibrocartilagenous regions indicates these cells are more loosely attached to the matrix than their spindle-shaped counterparts in fibrous regions, a feature that may help to minimize cell deformation during tendon compression. We hypothesized that expression of tenascin-C, an anti-adhesive protein, is part of the adaptation of tendon cells to compression that helps establish and maintain fibrocartilaginous regions. To test this hypothesis we compared tenascin-C content and expression in compressed (distal) versus uncompressed (proximal) segments of bovine flexor tendons. Immunohistochemistry and immunoblot analyses showed that tenascin-C content was increased in the distal tendon where it co-distributed with type II collagen and aggrecan. Tendon cells from the distal segments expressed more tenascin-C than did cells from the proximal segments for up to four days in cell culture, indicating that increased tenascin-C expression is a relatively stable feature of the distal cells. These observations support the hypothesis that tenascin-C expression is a cellular adaptation to compression that helps establish and maintain fibrocartilagenous regions of tendons.  相似文献   

17.
18.
Tenascins are large glycoproteins found in embryonic and adult extracellular matrices. Of the four family members, two have been shown to be overexpressed in the microenvironment of solid tumours: tenascin-C and tenascin-W. The regular presence of these proteins in tumours suggests a role in tumourigenesis, which has been investigated intensively for tenascin-C and recently for tenascin-W as well. In this review, we follow a malignant cell starting from its birth through its potential metastatic journey and describe how tenascin-C and tenascin-W contribute to these successive steps of tumourigenesis. We consider the importance of the mechanical aspect in tenascin signalling. Furthermore, we discuss studies describing tenascin-C as an important component of stem cell niches and present examples reporting its role in cancer therapy resistance.  相似文献   

19.
Tenascins   总被引:1,自引:0,他引:1  
Tenascins are a family of large multimeric extracellular matrix (ECM) proteins. Vertebrates express four tenascins termed tenascin-C, -R, -X and -W present in their connective tissues. Each tenascin has a specific expression pattern. To the contrary of many other ECM proteins, tenascins promote only weak cell adhesion and do not activate cell spreading. They have been classified as anti-adhesive, adhesion-modulating or even repellent ECM proteins. Tenascin-C and tenascin-R deficient mice show abnormalities in the nervous system and tenascin-C deficient mice, in addition, have defects in several regenerative processes. Mice lacking tenascin-X display hyperelastic skin much like Ehlers Danlos patients with mutations in their tenascin-X gene. Since tenascin-C is highly overexpressed in tumor stroma antibodies against tenascin-C have been used in tumor diagnosis and therapy. Since tenascins are known to influence cell shape, migration and growth they represent good candidate molecules for inclusion in artificial bioengineered tissue implants.  相似文献   

20.
Bone tumor is a notoriously difficult disease to manage, requiring frequent and heavy doses of systemically administered chemotherapy. Targeting anticancer drug to the bone after systemic administration may provide both greater efficacy of treatment and less frequent administration. In this paper, a series of bone targeting Asp oligopeptides 5-fluorouracil conjugates have been synthesized in a convergent approach and well characterized by NMR and MS techniques. Their hydroxyapatite (HAP) affinity, drug release and cytotoxicity characteristics were evaluated in in vitro conditions. All the prodrugs were water soluble and exhibited high affinity to HAP .The efficient release of the active drug moiety occurring by the cleavage of different linkage in physiological conditions significantly reduced the number of viable human cancer cells. From in vivo distribution, we get these compounds with high bone-selectivity and long halflife. These results provided an effective entry to the development of new bone targeting chemotherapeutic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号