首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tenascins are a family of extracellular matrix molecules that are mainly expressed in embryonic development and down-regulated in adulthood. A re-expression in the adult occurs under pathological conditions such as inflammation, regeneration or neoplasia. As the most prominent member of the tenascin family, TN-C, is highly expressed in glioma tissue and rising evidence suggests that TN-C plays a crucial role in cell migration or invasion – the most fatal characteristics of glioma – also the other members of this protein family have been investigated with regard to their impact on glioma biology. For all tenascins correlations between the expression levels of the different family members and the degree of malignancy and invasiveness of glial tumors could be detected. Overall, the former and recent results in the research on glioma and tenascins point at distinct roles of each of the molecules in glioma biology and the devastating properties of these tumors.  相似文献   

2.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

3.
4.
5.
整合素α6亚单位和肿瘤的发生、发展与转移   总被引:1,自引:0,他引:1  
整合素为跨膜糖蛋白,属于细胞表面的粘附分子。胞外域介导细胞与细胞及细胞与细胞外基质间的识别与结合,胞质域与细胞骨架和信号转导系统相连。α6亚单位与β1或β4亚单位非共价结合形成异二聚体,是细胞外基质蛋白质——层粘连蛋白的单特异性受体,与肿瘤的发生、发展和转移有着非常密切的关系。多种肿瘤的发生伴有整合素α6表达水平的变化,包括表达水平的升高、降低或极性分布的变化。表现为一些不表达α6β1的细胞,如肝细胞癌变后通过新合成的α6β1介导了肿瘤细胞与基底膜间相互作用而促进了肿瘤细胞的转移;表达α6β1的细胞α6β1失去沿基底膜的极性分布,导致细胞与基底膜的结合减弱,癌细胞易于脱落而发生转移;还可以通过促进细胞基质金属蛋白酶的分泌而促进肿瘤的转移,并导致肿瘤细胞的低分化表型。整合素α6可以促进肿瘤新生脉管的生成,一方面增加瘤组织的血供和营养,促进肿瘤的生长;另一方面促进脱落的肿瘤细胞进入血循环发生转移。  相似文献   

6.
Cell adhesion to extracellular matrix components involves integrin receptor-ligand binding and adhesion strengthening, comprising receptor clustering, cytoskeletal interactions, and cell spreading. Although elucidation of the biochemical events in adhesive interactions is rapidly advancing, the mechanical processes and mechanisms of adhesion strengthening remain poorly understood. Because the biochemical and biophysical processes in adhesive interactions are tightly coupled, mechanical analyses of adhesion strength provide critical information on structure-function relationships. This review focuses on (a) measurement systems for cell adhesion strength and (b) quantitative analyses of integrin-mediated strengthening to extracellular matrix components.  相似文献   

7.
Fibronectin and laminin production by human keratinocytes cultured in serum-free, low-calcium medium without a fibroblast feeder layer were examined by several techniques. By indirect immunofluorescence, fibronectin but not laminin appeared as short radial fibrils between the cells and the substratum, and in the pericellular matrix. Synthesis of fibronectin and laminin by 7-day keratinocyte cultures was determined by 18 hr 35S-methionine metabolic labeling followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Fibronectin accounted for 2.9% of total synthesized protein, 26.5% of fluid phase protein secretion, and 4.3% of deposited ECM protein. In contrast, only 0.1% of the total synthesized protein was laminin, little (6.3%) of this product was secreted, and none of this product was deposited in the ECM. Our results indicate that human keratinocytes under culture conditions that prevent terminal differentiation in vitro can synthesize, secrete, and deposit fibronectin in the extracellular matrix. Although these cells synthesize laminin, they secrete very little and deposit no detectable laminin in the matrix under these culture conditions. From these data we believe that fibronectin may play an important role in the interaction of epidermal cells with connective tissue matrix during wound healing or morphogenesis in in vivo situations in which the epidermis is not terminally differentiated.  相似文献   

8.
Larjava H  Plow EF  Wu C 《EMBO reports》2008,9(12):1203-1208
Integrin-mediated cell-ECM (extracellular matrix) adhesion is a fundamental process that controls cell behaviour. For correct cell-ECM adhesion, both the ligand-binding affinity and the spatial organization of integrins must be precisely controlled; how integrins are regulated, however, is not completely understood. Kindlins constitute a family of evolutionarily conserved cytoplasmic components of cell-ECM adhesions that bind to beta-integrin cytoplasmic tails directly and cooperate with talin in integrin activation. In addition, kindlins interact with many components of cell-ECM adhesions--such as migfilin and integrin-linked kinase--to promote cytoskeletal reorganization. Loss of kindlins causes severe defects in integrin signalling, cell-ECM adhesion and cytoskeletal organization, resulting in early embryonic lethality (kindlin-2), postnatal lethality (kindlin-3) and Kindler syndrome (kindlin-1). It is therefore clear that kindlins, together with several other integrin-proximal proteins, are essential for integrin signalling and cell-ECM adhesion regulation.  相似文献   

9.
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell–matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds. J. Cell. Biochem. 108: 1233–1243, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
Integrin‐linked kinase (ILK) is an adaptor protein required to establish and maintain the connection between integrins and the actin cytoskeleton. This linkage is essential for generating force between the extracellular matrix (ECM) and the cell during migration and matrix remodelling. The mechanisms by which ILK stability and turnover are regulated are unknown. Here we report that the E3 ligase CHIP–heat shock protein 90 (Hsp90) axis regulates ILK turnover in fibroblasts. The chaperone Hsp90 stabilizes ILK and facilitates the interaction of ILK with α‐parvin. When Hsp90 activity is blocked, ILK is ubiquitinated by CHIP and degraded by the proteasome, resulting in impaired fibroblast migration and a dramatic reduction in the fibrotic response to bleomycin in mice. Together, our results uncover how Hsp90 regulates ILK stability and identify a potential therapeutic strategy to alleviate fibrotic diseases.  相似文献   

12.
骨桥蛋白与生殖   总被引:2,自引:0,他引:2  
骨桥蛋白是细胞外基质的重要成分,它含有RGD序列,其主要受体为整合素αVβ3,二者相互作用共同参与介导细胞的聚集、黏附、增殖和迁移及免疫调节一系列重要过程.研究发现子宫内膜腺上皮细胞表达骨桥蛋白和其受体整合素αVβ3,且其在子宫内膜种植窗口期分泌至宫腔,推测与内膜容受性的建立及受精卵的种植有关.  相似文献   

13.
刘畅  赵锋  李庆章 《生物学杂志》2012,29(1):75-78,70
整合素是一种跨膜蛋白,属于黏附分子家族.其主要功能是参与细胞和细胞、细胞和细胞外基质(ECM)的黏附和信号转导.整合素是含有α和β两条肽链的异源二聚体,来源不同的α、β亚基所形成的整合素具有不同的ECM结合能力.阐述了整合素的结构、生物学功能以及生理、病理学意义,并概述了其研究进展.  相似文献   

14.
We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3 subunits, we find that the extracellular domain of beta1 controls RhoA activity. By expressing both beta1 and beta3 at high levels, we show that beta1-mediated control of the levels of beta3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions.  相似文献   

15.
Summary The main form of fibronectin (FN) encountered by tumor cells in vivo is cellular FN (cFN), which differs structurally and functionally from the commonly used plasma FN (pFN). We compared the effects of cFN and pFN on the ovarian carcinoma lines OVCAR-3 and SKOV-3 and on cultures of normal ovarian surface epithelium, which is the precursor of the epithelial ovarian carcinomas. Ovarian surface epithelial cells and SKOV-3 cells attached and spread faster on cFN than on pFN. On cFN, SKOV-3 migration was enhanced compared with pFN or plastic. In a matrigel transfilter assay, cFN strongly inhibited SKOV-3 invasion, whereas pFN did not. In contrast to SKOV-3, OVCAR-3 cells adhered faster on FN than on plastic but did not discriminate between cFN and pFN, and they did not migrate or invade matrigel either with or without FN. In both carcinoma lines, proliferation was unaffected by either FN. The results show profound differences in the responses to cFN and pFN by two invasive ovarian carcinoma lines. Because cFN is the main type that cancer cells encounter in vivo, extrapolations from culture data to in vivo events should preferably be based on studies using this form of FN.  相似文献   

16.
The epithelial-mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin alpha8beta1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin alpha8beta1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, alpha8beta1-AP detects a novel ligand of 70-90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin alpha8beta1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas alpha8beta1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by alpha8beta1-AP and forms a complex with alpha8beta1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating alpha8beta1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects.  相似文献   

17.
An interaction between mesenchyme and epithelium is required for the normal differentiation of fetal lung tissue. This morphogenic interaction may be mediated, in part, by changes in the composition and/or structure of the extracellular matrix. Therefore, we characterized the localization and accumulation of fibronectin, an extracellular-matrix component, during several stages of lung development in the rabbit fetus in vivo as well as in day-21 rabbit fetal lung explants maintained in vitro. Fibronectin was detected immunocytochemically in the basement-membrane zone beneath the epithelial ducts in lung tissue obtained from rabbit fetuses at 19 and 21 days of gestation. In fetal lung tissue obtained at these early stages of lung development, mesenchymal cells were stained only at their periphery. Immunostaining for connective-tissue fibronectin increased greatly between days 24 and 31 of gestation. A similar increase in the intensity of immunostaining for connective-tissue fibronectin was observed in rabbit fetal lung explants that had been maintained in vitro for 7 days. The concentration of fibronectin in fetal lung tissue obtained at different days of gestation was determined using a specific enzyme-linked immunoadsorbent assay (ELISA) and was found to increase from 1.7 ng/micrograms protein in fetal lung tissue obtained at day 19 of gestation to 7.3 ng/micrograms protein in fetal lung tissue obtained at day 24 of gestation. The levels of fetal lung fibronectin then remained relatively constant through to day 31 of gestation. A similar increase in fibronectin concentration was observed in day-21 fetal lung explants maintained in vitro for 7 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Survival of endothelial cells is critical for cellular processes such as angiogenesis. Cell attachment to extracellular matrix inhibits apoptosis in endothelial cells both in vitro and in vivo, but the molecular mechanisms underlying matrix-induced survival signals or detachment-induced apoptotic signals are unknown. We demonstrate here that matrix attachment is an efficient regulator of Fas-mediated apoptosis in endothelial cells. Thus, matrix attachment protects cells from Fas-induced apoptosis, whereas matrix detachment results in susceptibility to Fas-mediated cell death. Matrix attachment modulates Fas-mediated apoptosis at two different levels: by regulating the expression level of Fas, and by regulating the expression level of c-Flip, an endogenous antagonist of caspase-8. The extracellular signal-regulated kinase (Erk) cascade functions as a survival pathway in adherent cells by regulating c-Flip expression. We further show that detachment-induced cell death, or anoikis, itself results from activation of the Fas pathway by its ligand, Fas-L. Fas-L/Fas interaction, Fas-FADD complex formation, and caspase-8 activation precede the bulk of anoikis in endothelial cells, and inhibition of any of these events blocks anoikis. These studies identify matrix attachment as a survival factor against death receptor-mediated apoptosis and provide a molecular mechanism for anoikis and previously observed Fas resistance in endothelial cells.  相似文献   

19.
20.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号