首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root development in suspension cultures of Yucca schidigerawas light-mediated. The green cultures consisted of roots, smalltissue aggregates and suspension cells. Roots possessed an apicalmeristem with a root cap, meristematic region and region ofdifferentiating tissues. Phloem, xylem vessels and tracheidsoccurred in discrete polyarch vascular bundles. Xylary wallthickening was reticulate, and endodermis and pericycle werepresent. Roots of intact Y. schidigera plants had a similardistribution of vascular tissues. Dark-grown cultures were cream-colouredand contained only lobed tissue aggregates and suspension cells. Yucca schidigera Roezl., tissue cultures, morphogenesis, root organ, light/dark  相似文献   

2.
Patterns of root cortex cell development and ultrastructurewere analysed in Sagittaria lancifolia L., Thalia geniculataL. and Pontederia cordata L. using scanning and transmissionelectron microscopy (SEM, TEM). In all three species, cortexcells were arranged in radial columns extending from the endodermisto the hypodermis/epidermis. During gas space formation, thecortex cells elongated parallel to the root radius and shrankin the plane perpendicular to the radius leaving long and thinrows of cortex cells extending from the endodermis to the epidermis.Although the cortex cells appeared collapsed in tissue withwell-developed gas spaces, TEM revealed that the cortical cellsas well as the epidermal cells maintained intact membranes andmany normal organelles. Formation of root cortex tissue withwell-developed gas spaces does not require cell death in thesespecies. Living cortex cells in root tissue with mature gasspaces could provide a symplastic pathway for transport betweenthe root stele and the living epidermal cells. Copyright 2000Annals of Botany Company Sagittaria lancifolia, Thalia geniculata, Pontederia cordata, aerenchyma, root, wetland, development  相似文献   

3.
Structural features of the mature root cortex and its apoplasticpermeability to dyes have been determined for two dicotyledonouswetland plants of differing habitats: Nymphaea odorata, growingrooted in water and mud, and Caltha palustris, growing in temporalwetlands among cattails. In mature roots, movement of the apoplasticdyes, berberine and safranin, into the roots was blocked atthe hypodermis, indicating the presence of an exodermis. A hypodermiswith an exodermis, i.e. Casparian bands in the outermost uniseriatelayer plus suberin lamellae, is present in both species. InN. odorata, hypodermal walls are further modified with cellulosicsecondary walls. Roots of N. odorata and C. palustris have anendodermis with Casparian bands only. A honeycomb aerenchymais produced by differential expansion in N. odorata and includesastrosclereids and diaphragms, while roots of C. palustris haveno aerenchyma, but some irregular lacunae are found in old roots.These aspects of cortex structure are related to an open meristemorganization, with unusual patterns of cell divisions in certainground meristem cells (called semi-regular hexagon cells) ofN. odorata. The correlation between aerenchyma pattern and hypodermalstructure appears to be related to habitat differences.Copyright2000 Annals of Botany Company Caltha palustris, Nymphaea odorata, root development, cortex, endodermis, aerenchyma, exodermis, hypodermis, permeability, wetland plants  相似文献   

4.
CLOWES  F. A. L. 《Annals of botany》1985,55(6):849-857
All three floating plants have roots bearing laterals derivedfrom both pericycle and endodermis. In Pistia and Eichhornialaterals arise within the meristem of the mother root; in Hydrocharisthey arise from mature tissue. In Pistia and Hydrocharis theepidermis becomes anatomically discrete between cortex and cap:in Pistia it is derived from the endodermis of the mother root,in Hydrocharis from the pericycle. The epidermis is not discretein Eichhornia and is derived from the pericycle of the motherroot with the cortex. Stathmokinetic data were used to construct timetables of developmentwhich show how the differences arise. In Pistia the first periclinaldivision of the endodermis-derived tissue individualizes theepidermis and occurs early, before a quiescent centre forms.In Hydrocharis the epidermis also becomes discrete before thepole of the meristem becomes quiescent, but it does so by apericlinal division of the pericycle-derived tissue. In Eichhorniapericlinal divisions occur in the outermost layer of the pericycle-derivedtissue long after quiescence has set in at the pole and afterthe fourth periclinal division in the endodermis derived cap.Its epidermis therefore never becomes anatomically discretethough it becomes functionally discrete because its polar cellsstop dividing as in the other plants. The involvement of the endodermis of mother roots in the formationof laterals is discussed in relation to the state of differentiationat sites of primordium formation, discreteness of the epidermisand subsequent fate of primordia. Pistia stratiotes L., Hydrocharis morsus-ranae L., Eichhornia crassipes Solms., primordia, lateral root, discrete epidermis, development, chimera, stathmokinetics  相似文献   

5.
Effects of Flooding and Drought on the Anatomy of Paspalum dilatatum   总被引:4,自引:0,他引:4  
Paspalum dilatatum occupies different topographic positionsin the Flooding Pampa, Argentina. Populations from differentpositions are subjected to various regimes of flooding and drought,both of which may occur in the same growing season. We investigatedthe constitutive and plastic anatomical traits of P. dilatatumpopulations from habitats with contrasting regimes of floodingand drought. Both events affected root and sheath anatomy, andthese effects were similar for clones from different topographicpositions. Flooding increased the aerenchymatous tissue in theroot cortex and the leaf sheaths and decreased the number ofroot hairs per unit of root length. Drought decreased the diameterof root metaxylem vessels, thus lowering the risk of embolismsand increasing water-flow resistance, and increased the numberof root hairs, thereby increasing water uptake ability. In additionto these plastic responses, all clones showed constitutive characteristicsthat may confer an ability to withstand sudden events of floodingor drought: a high proportion of aerenchyma, which may maintainaeration before plastic responses take place; sclerenchyma,which may prevent root and leaf sheath collapse by soil compaction;and a conspicuous endodermis, which may protect stelar tissuesfrom desiccation. Both constitutive and plastic anatomical characteristicsare likely to contribute to the ability of this species to occupywidely different topographic positions and to resist temporalvariations in water and oxygen availability. Copyright 2001Annals of Botany Company Flooding, drought, aerenchyma, vessels, roots, leaf sheaths, anatomy, Paspalum dilatatum Poir  相似文献   

6.
The periderm in roots of Pinus banksiana Lamb. and the polyderm in roots of Eucalyptus pilularis Sm. originate from the pericycle. This occurs after the roots have turned brown due to deposition of tannins in the walls of cells external to the endodermis. In both species, cork cells form a continuous sheath around the vascular tissues. The cork cell walls are modified by the presence of suberin, lignin and tannin and it is the latter which imparts a brown colour to the tissue. The first layer of cork cells in both species constitutes an apoplastic barrier which prevents the fluorescent dye, berberine, from entering the vascular tissues, despite the absence of an identifiable Casparian band in the cells. Because the roots are still covered with the cortex and epidermis during early stages of periderm and polyderm formation, it is not possible to tell from the external aspect of the root when it makes a transition from the tannin zone to the cork zone.  相似文献   

7.
Light, fluorescence and electron microscopical analysis of therooted freshwater plantRanunculus trichophyllusrevealed a peculiaranatomical feature. In addition to the true endodermis encirclingthe root stele, endodermis-like sheaths occurred around eachvascular bundle of the leaf segments and of the eustelic stemwith its large central cavity, which assumed an anatomical featureresembling that of some pteridophyte stems. These impermeablesheaths, whose cells differentiate suberized walls, can playa major role in hampering the apoplastic leakage of the pressurizedwater solution which flows throughout the plant in xylem vesselsand contains the mineral nutrients taken up by the roots fromthe sediment. Moreover, these sheaths can function in preventingflooding of the aerenchymatic cavities of the submerged organs.In this way the endodermis-like sheaths preserve the correctcirculation of gas and nutrient solution through the entireorganism and assume great significance as a structural mechanismevolved by this species to survive and grow underwater.Copyright1999 Annals of Botany Company. Ranunculus trichophyllus,freshwater macrophyte, submerged angiosperm, anatomy, endodermis, endodermis-like sheaths, light microscopy, fluorescence microscopy.  相似文献   

8.
The effect of high pH on the morphology and anatomy of the rootsof lupin (Lupinus angustifolius L. cv. Yandee) and pea (Pisumsativum L. cv. Dundale) was examined in buffered solution. Themorphology and anatomy of lupin roots were markedly altered,and root growth was reduced by increasing solution pH from 5·2to 7·5, whereas pea roots were unaffected. In lupin roots,pH 7·5 caused disintegration of the root surface andimpaired root hair formation. Lupin roots grown at pH 7·5also had decreased cell lengths but increased cell diameterin both the epidermis and the cortex in comparison to rootsgrown at pH 5·2. High pH reduced cell volume greatlyin the epidermis, to a lesser extent in the outer cortex andnot at all in the inner cortex. It appears that in lupins, theprimary detrimental effects of growth at pH 7·5 is reducedlongitudinal growth of cells near the root surface with a consequentreduction in elongation of the cells in inner cortex.Copyright1993, 1999 Academic Press Lupinus angustifolius L., Pisum sativum L., high pH, root morphology, root anatomy  相似文献   

9.
GEIS  J. W. 《Annals of botany》1978,42(5):1119-1129
Particulate biogenic opaline silica is concentrated in cellwalls, intercellular deposits and cell lumina of all portionsof the above-ground plant body of three species of PanicoidGramineae,Andropogon gerardi, Sorgastrum nutans and Panicumvirgatum. Morphologically distinct opal phytoliths form notonly in long cells, short cells, trichomes, stomatal elementsand bulliform cells of the epidermis but also within the cellularstructure of mesophyll, vascular, and sclerenchyma tissues.Roots and rhizomes contain measurable quantities of opalinesilica, and phytoliths develop in epidermal long cells, saddle-shapedshort cells, vascular cells, and intercellular deposits. A morphologicallyunique plate-phytolith, formed by silicification of the innertangential wall of the endodermis, is present in the roots ofall three species. Differences in the quantity of opaline silicaoccur between species and between parts of the same species.The amount of opal deposited in the soil annually by root systemsand above-ground parts is approximately equal in magnitud Andropogon gerardi, Sorgastrum nutans, Panicum virgatum, opaline silica deposition  相似文献   

10.
The anatomy of the adventitious roots of Musa acuminata cv.Gros Michel is described. Interesting anatomical features arethe occurrence of lysigenous lacunae in the cortex and the presenceof very large metaxylem vessels and internal phloem strandsin the stele. The organization of the root meristem is consideredin terms of present concepts. Histological preparations andautoradiographs suggest the existence of an area of relativequiescence in the meristem. The use of modified histogen terminologyin describing the apex is recommended. The development of thetissue systems is also described with emphasis on the differentiationof the vascular tissue.  相似文献   

11.
黄连(Coptis chinensis)是毛茛科著名药材,该文研究了黄连体内黄连素在组织器官中的分布规律和根尖屏障结构特征。在白光和荧光显微镜下,组织器官中黄连素在蓝色激发光下自发黄色荧光,黄连素-苯胺兰对染研究细胞壁凯氏带和木质化,苏丹7B染色栓质层,间苯三酚-盐酸染色木质化。结果表明:黄连不定根初生结构为维管柱、内皮层、皮层、外皮层和表皮组成;次生结构以次生木质部为主、次生韧皮部和木栓层组成。黄连根茎初生结构由角质层,皮层和维管柱组成;次生结构由木栓层、皮层和维管柱组成,以皮层和维管柱为主。叶柄结构为髓、含维管束的厚壁组织层、皮层和角质层。黄连不定根的屏障结构初生结构时期由栓质化和木质化的内皮层、外皮层;次生结构时期为木栓层组成;根状茎的为角质层和木栓层。黄连素主要沉积分布在不定根和茎的木质部,叶柄的厚壁组织层,木质部和厚壁组织是鉴别黄连品质的重要部位。黄连根尖外皮层及早发育,同时初生木质部有黄连素沉积结合,可能造成水和矿质吸收和运输的阻碍,也是黄连适应阴生环境的重要原因。  相似文献   

12.
Cuttings of Agathis australis undergo complex anatomical changesin the sub-base and base. These changes include wound responsesin addition to the processes leading to adventitious root production.Although the root pnmordia form in the mid cortex the firstevents are associated with divisions in the interfasicular regiona few millimetres above the base of the Cutting. This is followedby differentiation into tracheids and phloem which then areoutwards and downwards into the mid cortex. When the inducedvascular strand is only a few cells wide, conditions at theadvancing front are most favourable for primordium formation.If sheets of vascular tissue occur, there is neither the spacenor the focal point for primordia to initiate. In cuttings fromolder material there are abundant resin canals, sclerenchymaand branch traces. These may reduce the amount of parenchymatissue to such a low level that potential primordial sites areno longer present and root formation is prevented. Organization is not observed until over 1500 cells are presentand at about this stage the beginning of organized cell arrangementcan be seen at the site of the apex of the primordium. Untilthis time the progress towards a primordium could not be saidto be ‘determined’. Although the lag phase before any morphological or anatomicalchanges are observed is variable in duration, the time takenfor the period of tracheid development and then for primordiumorganization and outgrowth is fairly constant, taking about2 weeks for each of the two phases. Evidence suggests that thevariation between species is probably in the duration of thelag phase and in the precise site of origin and pattern of theearly events. Once the primordium has formed the events leadingto root formation are probably similar for most species bothfor adventitious and lateral roots. Agathis australis (D. Don) Lindl, kauri, cuttings, wound responses, vascular connections, root primordia, root anatomy  相似文献   

13.
中国蜘蛛抱蛋属植物营养器官的解剖学研究   总被引:5,自引:2,他引:3  
首次对中国蜘蛛抱蛋属 9种植物的营养器官进行了解剖学研究。结果表明 :该属 9种植物的解剖结构基本相同。根和根状茎都由表皮、皮层和维管柱组成。根表皮下有单层薄壁细胞 ;内、外皮层均为一层五面加厚的厚壁细胞 ,内皮层外切向壁薄 ,呈马蹄形 ,外皮层内切向壁薄而外切向壁特别加厚 ,并栓质化 ,在横切面上形成一明显的厚壁组织环带 ;根为多原形。根状茎有明显的内皮层 ,周木维管束散生于维管柱的基本组织中 ;具有次生结构 ,次生保护组织为周皮。叶为等面叶 ,具有C4植物结构特征 ;气孔在上、下表皮均有分布 ,保卫细胞肾形 ,属四轮列型。该属植物的解剖结构与其生态环境相适应 ,体现了结构与功能的统一。  相似文献   

14.
Lucifer Yellow (LYCH) and carboxyfluorescein (CF) served in Medicago truncatula roots and root nodules as the markers of apoplastic and symplastic transport, respectively. The aim of this study was to understand better the water and photoassimilate translocation pathways to and within nodules. The present study shows that in damaged roots LYCH moves apoplastically through the vascular elements but it was not detected within the nodule vascular bundles. In intact roots, the outer cortex was strongly labeled but the dye was not present in the interior of intact root nodules. The inwards movement of LYCH was halted in the endodermis. When the dye was introduced into a damaged nodule by infiltration, it spread only in the cell walls and the intercellular spaces up to the inner cortex. Our research showed that in addition to the outer cortex, the inner tissue containing bacteroid-infected cells is also an apoplastic domain. Our results are consistent with the hypothesis that nodules do not receive water from the xylem but get it and photoassimilates from phloem. A comparison between using LYCH and LYCH followed by glutaraldehyde fixation indicates that glutaraldehyde is responsible for fluorescence of some organelles within root nodule cells. The influence of the fixation on nodule fluorescence has not been reported before but must be taken into consideration to avoid errors. An attempt was made to follow carboxyfluorescein (6(5) CF) translocation from leaflets into roots and root nodules. In root nodules, CF was present in all or a couple of vascular bundles (VB), vascular endodermis and some adjacent cells. The leakage of CF from the VBs was observed, which suggests symplastic continuity between the VBs and the nodule parenchyma. The lack of CF in inner tissue was observed. Therefore, photoassimilate entry to the infected region of nodule must involve an apoplastic pathway.  相似文献   

15.
Studies of the migration of second stage juveniles (JJ2) ofthe root-knot nematode Meloidogyne incognita in Arabidopsisroots were made at the cellular level using immunolabellingtechniques. A panel of antibodies that recognize epitopes presentin the plant extracellular matrix (JIMs) and the nematode cuticle(PC245) were used. The normal route for the juvenile (J2) hasbeen reconfirmed for both in vitro and in vivo conditions. Histologicalstudies show that, during migration towards the root meristem,juveniles (JJ2) sometimes break the physico-chemical barrierof the endodermis and establish close contact with the centralcylinder. Despite this, the juveniles continue their intercorticalmigration towards the root meristem. When the endodermis isbreached, hyperplasia and hypertrophy occur and a prematuregall is formed. Ultrastructural observations confirmed thatloosening of the middle lamella occurs during progress throughthe cortex. Differences in the patterns of labelling of healthyand infected roots were revealed when the antipolygalacturonicacid antibody, JIM5, was applied; epitopes recognized by thisantibody are mainly located on the triple junctions betweencells. Some of the antibodies used proved very useful in illustratingthe intercellular migration of JJ2 in the vascular cylinder,where they move in the vicinity of the protoxylem and futuremetaxylem cells. An envelope surrounding the nematodes, butlocated specifically on plant cell walls, was observed wheninfected rootsections were probed with PC245. This materialat this interface appears to be of nematode origin. Characterizationof the molecules involved is currently under investigation. Key words: Meloidogyne incognita, Arabidopsis thaliana, immunolabelling, JIM(s), migration  相似文献   

16.
The constraints on water uptake imposed by individual root tissueswere examined forOpuntia ficus-indicaunder wet, drying, andrewetted soil conditions. Root hydraulic conductivity (LP) andaxial conductance (Kh) were measured for intact root segmentsfrom the distal region with an endodermis and from midroot witha periderm;LPwas then measured for each segment with successivetissues removed by dissection. Radial conductivity (LR) wascalculated fromLPandKhfor the intact segment and for the individualtissues by considering the tissue conductivities in series.Under wet conditions,LRfor intact distal root segments was lowestfor the cortex; at midroot, where cortical cells are dead,LRforthe cortex was higher and no single tissue was the predominantlimiter ofLR.LRfor the endodermis and the periderm were similarunder wet conditions. During 30d of soil drying,LRfor the distalcortex increased almost three-fold due to the death of corticalcells, whereasLRfor the midroot cortex was unaffected;LRforthe endodermis and the periderm decreased by 40 and 90%, respectively,during drying. For both root regions under wet conditions, thevascular cylinder had the highestLR, which decreased by 50–70%during 30d of soil drying. After 3d of rewetting, new lateralroots emerged, increasingLRfor the tissues outside the vascularcylinder as well as increasing uptake of an apoplastic tracerinto the xylem of both the roots and the shoot. The averageLRforintact root segments was similar under wet and rewetted conditions,but the conductivity of the tissues outside the vascular cylinderincreased after rewetting, as did the contribution of the apoplasticpathway to water uptake. Opuntia ficus-indica; prickly pear; root hydraulic conductivity; endodermis; periderm; apoplast; lateral root emergence  相似文献   

17.
The anchorage systems of Himalayan balsam Impatiens glanduliferaand mature sunflowers Helianthus annuus were investigated bycombining morphological and anatomical study of the root systemswith mechanical tests on roots and with studies in which matureplants were pulled over. The root system of balsam is dominated by large numbers of fleshytapering adventitious roots which point downwards from theirorigin at the wide stem base. Sunflowers, in contrast, havea tapering tap-root from which 20–30 well-branched lateralsemerge, pointing radially outwards and downwards. Roots of eachspecies have contrasting anatomy: those of balsam resemble stems,having a central watery pith and being strengthened peripherallyby lignification of vascular tissue; roots of sunflowers arestrengthened by a solid woody stele. Roots of both species arerigid in tension and, towards the base, in bending. Both species exhibited similar behaviour to that known for treessuch as Sitka spruce; when pulled over they rotated about ahinge leeward of the stem base and a root-soil ball was pulledout of the surrounding soil. Anchorage was resolved into threecomponents which, in order of decreasing magnitude, were (i)the resistance to pulling of the roots on the windward sideof the plant (and, for sunflower, the tap-root); (ii) the resistanceof roots and soil at the leeward hinge to rotation; and (iii)the weight of the root-soil ball. Sunflower had stronger anchoragebut achieved it at a greater cost in terms of the dry mass ofits root system. In each species, the morphology, anatomy and mechanical propertiesof the root system can be related to those of the stem. Thewide stem base of balsam allows large numbers of mechanicallyefficient fleshy roots to be attached whereas in sunflowersa woody tap-root system is necessary to anchor the much narrowerstem. Key words: Impatiens, Helianthus, roots, anchorage  相似文献   

18.
The optimum temperature for development of race 5 of Meloidogyne naasi was 26 C. A life cycle was completed in 34 days. Growth of sorghum was suppressed when inoculated with M. naasi. Observations of M. naasi-infected sorghum roots demonstrated that roots were penetrated just behind the root cap; giant cells were generally initiated either in the procambial region or in very young phloem. When giant cells developed in the cortex, corresponding areas of the vascular system did not have an endodermis, pericycle, or phloem fibers. Nineteen plant species were tested for suitability as hosts for race 5 of M. naasi. Reproduction occurred on 11 of 12 monocotolydenous hosts and none of 7 dicotolydenous hosts. Reproduction often occurred without gall development.  相似文献   

19.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

20.
The length of cells of the pericycle, endodermis and middlecortex not actively involved in lateral root primordia (LRP)development was measured in primary roots of Allium cepa, Pisumsativum and Daucus carota. The presence of two cell populationsin the pericycle was demonstrated in all three species. In Alliumcepa and Pisum sativum, pericyclic cells located opposite xylempoles were significantly shorter than cells lying opposite phloempoles. In both species, LRP originated opposite xylem poles.Our results, furthermore, strongly suggest that in regions ofthe root far from the apical meristem, numerous pericyclic cellsundergo transverse division both previous to and during LRPinitiation, decreasing in mean length throughout this period.In Daucus carota, LRP begin to form in pericyclic cells locatednext to the phloem poles, such cells were significantly shorterthan those opposite xylem poles, even in areas of the primaryroot located close to the root tip. Cells also appear to dividetransversely in regions far from the root tip in this species,leading to a conspicuous drop in the mean length of those cellslocated in portions of the pericycle destined to give rise toLRP. Two different cell populations can also be distinguishedin the endodermis of Allium cepa and Pisum sativum, althoughobservations were less conclusive in Daucus carota. In all threespecies, length of cortical cells was unaffected by their positionopposite xylem or phloem poles Allium cepa, carrot, cell division, cell length, Daucus carota, endodermis, lateral root development, onion, pea, pericycle, Pisum sativum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号