首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ⅲ型分泌系统分子伴侣研究进展   总被引:8,自引:0,他引:8  
Ⅲ型分泌系统广泛存在于革兰氏阴性致病菌中。通过Ⅲ型分泌系统 ,耶尔森氏菌属、沙门氏菌属、福氏志贺氏菌等革兰氏阴性致病菌注射毒力因子到宿主细胞中 ,被注入的细菌毒力蛋白在宿主细胞中刺激或干扰宿主细胞的代谢过程 ,支配细菌与宿主细胞的相互作用 ,从而引起诸如鼠疫、伤寒、痢疾等许多疾病。Ⅲ型分泌系统分子伴侣在帮助毒力蛋白分泌的过程中起到重要作用。尽管发现Ⅲ型分泌系统分子伴侣至今已近十年 ,但其具体的功能仍不清楚。从分类、功能、与相应底物作用的特点等方面对Ⅲ型分泌系统分子伴侣的研究进展作一简单介绍  相似文献   

2.
Translation/secretion coupling by type III secretion systems   总被引:20,自引:0,他引:20  
Karlinsey JE  Lonner J  Brown KL  Hughes KT 《Cell》2000,102(4):487-497
  相似文献   

3.
Bacteria secrete flagella subunits and deliver virulence effectors via type III export systems. During flagellar filament assembly, a chaperone escort mechanism has been proposed to enhance the export of early, minor flagellar filament components by selectively binding and cycling their chaperones. Here we identify virulence orthologues of the flagellar chaperone escort FliJ and show that the orthologues Salmonella InvI and Yersinia YscO are, like FliJ, essential for their type III export pathway and similarly, do not bind export substrates. Like FliJ, they recognize a subset of export chaperones, in particular those of the host membrane translocon components required for subsequent effector delivery.  相似文献   

4.
5.
Gram-negative bacteria use type III secretion (TTS) systems to translocate proteins into the extracellular environment or directly into eukaryotic cells. These complex secretory systems are assembled from over 20 different structural proteins, including 10 that have counterparts in the flagellar export pathway. Secretion substrates are directed to the TTS machinery via mRNA and/or amino acid secretion signals. TTS chaperones bind to select secretion substrates and assist in the export process. Recent progress in the understanding of TTS is reviewed.  相似文献   

6.
Many Gram-negative pathogens use a type III secretion machine to translocate protein toxins across the bacterial cell envelope. Pathogenic Yersinia spp. export at least 14 Yop proteins via a type III machine, which recognizes secretion substrates by signals encoded in yop mRNA or chaperones bound to unfolded Yop proteins. During infection, substrate recognition appears to be regulated in a manner that allows the Yersinia type III pathway to direct Yops to the bacterial envelope, the extracellular medium or into the cytosol of host cells.  相似文献   

7.
8.
Many Gram-negative pathogens utilize a type III secretion system (TTSS) to inject toxins into the cytosol of eukaryotic cells. Previous studies have indicated that exported substrates are targeted to the Yersinia TTSS via the coding regions of their 5' mRNA sequences, as well as by their cognate chaperones. However, recent results from our laboratory have challenged the role of mRNA targeting signals, as we have shown that the amino termini of exported substrates are crucial for type III secretion. Here, we discuss the nature of these amino-terminal secretion signals and propose a model for the secretion of exported substrates by amino-terminal and chaperone-mediated signals. In addition, we discuss the roles of chaperones as regulators of virulence gene expression and present models suggesting that such regulation can occur independently of the delivery of their substrates to the secretion apparatus.  相似文献   

9.
Enteropathogenic Escherichia coli uses a type III secretion apparatus to deliver proteins essential for pathogenesis to the host epithelium. Several proteins have been detected in culture supernatants of the prototype EPEC strain E2348/69 and three of these, EspA, EspB, and EspD, use type III machinery for export. Here, we report the identification and characterization of CesD, a protein required for proper EspB and EspD secretion. CesD shows sequence homology to chaperone proteins from other type III secretion pathways. Based on this, we hypothesize that CesD may function as a secretion chaperone in EPEC. A mutation in cesD abolished EspD secretion into culture supernatants and reduced the amount of secreted EspB, but had little effect on the amount of secreted EspA. The mutant strain was negative for both FAS and Tir phosphorylation, consistent with the previously described roles for EspB and EspD in EPEC pathogenesis. CesD was shown to interact with EspD but not EspB or EspA. CesD was detected in the bacterial cytosol, and, surprisingly, a substantial amount of the protein was also found to be associated with the inner membrane. Thus, although CesD has some attributes that are similar to other type III secretion chaperones, its membrane localization separates it from previously described members of this family.  相似文献   

10.
Few interactions have been reported between effectors and components of the type III secretion apparatus, although many interactions have been demonstrated between type III effectors and their cognate chaperones. It is thought that chaperones may play a role in directing effectors to the type III secretion apparatus. The ATPase FliI in the flagellar assembly apparatus plays a pivotal role in interacting with other components of the apparatus and with substrates of the flagellar system. We performed experiments to determine if there were any interactions between the effector Tir and its chaperone CesT and the type III secretion apparatus of enteropathogenic Escherichia coli (EPEC). Specifically, based on analogies with the flagella system, we examined Tir-CesT interactions with the putative ATPase EscN. We showed by affinity chromatography that EscN and Tir bind CesT specifically. Tir is not necessary for CesT and EscN interactions, and EscN binds Tir specifically without its chaperone CesT. Moreover, Tir directly binds EscN, as shown via gel overlay and enzyme-linked immunosorbent assay, and coimmunoprecipitation experiments revealed that Tir interacts with EscN inside EPEC. These data provide evidence for direct interactions between a chaperone, effector, and type III component in the pathogenic type III secretion system and suggest a model for Tir translocation whereby its chaperone, CesT, brings Tir to the type III secretion apparatus by specifically interacting with the type III ATPase EscN.  相似文献   

11.
Many Gram-negative bacteria are able to invade hosts by translocation of effectors directly into target cells in processes usually mediated by two very complex secretion systems (SSs), named type III (T3) and type IV (T4) SSs. These syringe-needle injection devices work with intervention of specialized secretion chaperones that, unlike traditional molecular chaperones, do not assist in protein folding and are not energized by ATP. Controversy still surrounds secretion chaperones primary role, but we can say that these chaperones act as: (i) bodyguards to prevent premature aggregation, or as (ii) pilots to direct substrate secretion through the correct secretion system. This family of chaperones does not share primary structure similarity but amazingly equal 3D folds. This mini review has the intent to present updated structural and functional data for several important secretion chaperones, either alone or in complex with their cognate substrates, as well to report on the common features and roles of T3, T4 and flagellar chaperones.  相似文献   

12.
Map is an enteropathogenic Escherichia coli (EPEC) protein that is translocated into eukaryotic cells by a type III secretion system. Although not required for the induction of attaching and effacing (A/E) lesion formation characteristic of EPEC infection, translocated Map is suggested to disrupt mitochondrial membrane potential, which may impact upon subsequent functions of the organelle such as control of cell death. Before secretion, many effector proteins are maintained in the bacterial cytosol by association with a specific chaperone. In EPEC, chaperones have been identified for the effector proteins translocated intimin receptor (Tir) and EspF, and for the translocator proteins EspB and EspD. In this study, we present evidence that the Tir-specific chaperone, CesT, also performs a chaperone function for Map. Using a combination of biochemical approaches, we demonstrate specific interaction between CesT and Map. Similar to other chaperone-effector pairings, binding is apparent at the amino-terminus of Map and is indicated to proceed by a similar mechanism to CesT:Tir interaction. Map secretion from a cesT mutant strain (SE884) is shown to be reduced and, importantly, its translocation from this strain after infection of HEp-2 cells is almost totally abrogated. Although other chaperones are reported to have a bivalent binding specificity, CesT is the first member of its family that chaperones more than one protein for translocation.  相似文献   

13.
A remarkable feature of the flagellar‐specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook‐basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N‐terminal secretion signal, mRNA secretion signals within the 5′‐untranslated region (5′‐UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β‐lactamase fusions to probe the secretion efficacy of the N‐terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early‐type substrates FlgD, FlgF, FlgE and the late‐type substrate FlgL were analysed in detail. Analysing the role of the 5′‐UTR in secretion of flgB and flgE revealed that the native 5′‐UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate‐specific chaperones allowing for targeted secretion of flagellar substrates.  相似文献   

14.
Assembly of the bacterial flagellum and type III secretion in pathogenic bacteria require cytosolic export chaperones that interact with mobile components to facilitate their secretion. Although their amino acid sequences are not conserved, the structures of several type III secretion chaperones revealed striking similarities between their folds and modes of substrate recognition. Here, we report the first crystallographic structure of a flagellar export chaperone, Aquifex aeolicus FliS. FliS adopts a novel fold that is clearly distinct from those of the type III secretion chaperones, indicating that they do not share a common evolutionary origin. However, the structure of FliS in complex with a fragment of FliC (flagellin) reveals that, like the type III secretion chaperones, flagellar export chaperones bind their target proteins in extended conformation and suggests that this mode of recognition may be widely used in bacteria.  相似文献   

15.
In the type III secretory system of bacterial pathogens, a large number of sequence-divergent but characteristically small (approximately 14-19 kDa), acidic (pI approximately 4-5) chaperone proteins have been identified. We present the 1.74 A resolution crystal structure of the Yersinia pseudotuberculosis chaperone SycE, whose action in promoting translocation of YopE into host macrophages is essential to Yersinia pathogenesis. SycE, a compact, globular dimer with a novel fold, has two large hydrophobic surface patches that may form binding sites for YopE or other type III components. These patches are formed by structurally key residues that are conserved among many chaperones, suggesting shared structural and functional relationships. A negative electrostatic potential covers almost the entire surface of SycE and is likely conserved in character, but not in detail, among chaperones. The structure provides the first structural insights into possible modes of action of SycE and type III chaperones in general.  相似文献   

16.
Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook–filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear.  相似文献   

17.
Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification.  相似文献   

18.
Bacterial type III secretion systems (T3SS) are complex protein assemblies that mediate the secretion of protein substrates outside the cell. Type III secretion chaperones (T3SC) are always found associated with T3SS, and they serve in multiple roles to ensure that protein substrates are efficiently targeted for secretion. Bacterial pathogens with T3SS express T3SC proteins that bind effectors, a process important for effector protein delivery into eukaryotic cells during infection. In this minireview, we focus on multicargo and class 1B T3SC that associate with effectors within significant pathogens of animals and plants. As a primary role, multicargo and class 1B T3SC form homodimers and specifically bind different effectors within the cytoplasm, maintaining the effectors in a secretion-competent state. This role makes T3SC initial and central contributors to effector-mediated pathogenesis. Recent findings have greatly expanded our understanding of cellular events linked to multicargo T3SC function. New binding interactions with T3SS components have been reported in different systems, thereby implicating multicargo T3SC in critical roles beyond effector binding. Three notable interactions with the YscN, YscV, and YscQ family members are well represented in the literature. Similar T3SC interactions are reported in the putative related flagellar T3SS, suggesting that secretion mechanisms may be more similar than previously thought. The evidence implicates multicargo and class 1B T3SC in effector binding and stabilization, in addition to T3SS recruitment and docking events.  相似文献   

19.
Type III secretion systems (T3SSs) are central virulence mechanisms used by a variety of Gram-negative bacteria to inject effector proteins into host cells. The needle polymer is an essential part of the T3SS that provides the effector proteins a continuous channel into the host cytoplasm. It has been shown for a few T3SSs that two chaperones stabilize the needle protein within the bacterial cytosol to prevent its premature polymerization. In this study, we characterized the chaperones of the enteropathogenic Escherichia coli (EPEC) needle protein EscF. We found that Orf2 and Orf29, two poorly characterized proteins encoded within the EPEC locus of enterocyte effacement (LEE), function as the needle protein cochaperones. Our finding demonstrated that both Orf2 and Orf29 are essential for type III secretion (T3S). In addition, we found that Orf2 and Orf29 associate with the bacterial membrane and form a complex with EscF. Orf2 and Orf29 were also shown to disrupt the polymerization of EscF in vitro. Prediction of the tertiary structures of Orf2 and Orf29 showed high structural homology to chaperones of other T3SS needle proteins. Overall, our data suggest that Orf2 and Orf29 function as the chaperones of the needle protein, and therefore, they have been renamed EscE and EscG.  相似文献   

20.
In many Gram-negative bacteria, a key indicator of pathogenic potential is the possession of a specialized type III secretion system, which is utilized to deliver virulence effector proteins directly into the host cell cytosol. Many of the proteins secreted from such systems require small cytosolic chaperones to maintain the secreted substrates in a secretion-competent state. One such protein, CesT, serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. Using a combination of complementary biochemical approaches, functional domains of CesT that mediate intermolecular interactions, involved in both chaperone-chaperone and chaperone-substrate associations, were determined. The CesT N-terminal is implicated in chaperone dimerization, whereas the amphipathic alpha-helical region of the C-terminal, is intimately involved in substrate binding. By functional complementation of chaperone domains using the Salmonella SicA chaperone to generate chaperone chimeras, we show that CesT-Tir interaction proceeds by a mechanism potentially common to other type III secretion system chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号