首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of the node of Ranvier has been previously described using thin-section electron microscopy. Using freeze-fracture, we have examined the development of glial and axonal membrane specializations before and during myelination. The spinal roots of the newborn rat are composed of bundles of unmyelinated and partially myelinated axons. At this early stage of development, the axons are engulfed by Schwann cells, while certain axons are segregated into a one to one relationship with myelinating cells. Patches of uniformly shaped 150- to 300-Å particles are readily distinguished against a relatively nonparticulate axonal E face. Patches of less uniform particles are found in the axonal P face, however, they are difficult to distinguish from a particulate background. Thin processes are found closely applied to the axonal membrane on the sides of a particle patch. While engulfing the axon with one or two noncompacted windings, the Schwann cell is predominantly restricted to one side of such a particle patch. As the number of windings covering the axon increases, so does the size of the particle patch, until an annulus of particles, similar to that of an adult node, is observed. The paucity of isolated particle patches in axolemma suggests that recognition and segregation of axons by Schwann cells are followed by a rapid initiation of myelination. Throughout the early periods of myelination there is evidence of endocytotic and exocytotic events at the nodal membrane associated with the appearance of 230-Å dimeric particles in the axolemma. Despite the paucity of windings and complete absence of compaction, the fracture faces of the glial and axonal membranes show linear organizations of particles. Scalloped regions in the P face of the nodal axolemma display dimeric-particle rows oriented along the scallop. These rows adopt a more circumferential orientation when the overlying glial process is wound into a paranodal location. While the spacing of dimeric-particle rows is maintained at a constant 360 Å, the number of rows per scallop necessarily decreases with compaction of the paranodal loops until a state similar to that of the adult, in which there are approximately two rows per scallop, is reached. In regions of close apposition between axon and Schwann cell, a linear arrangement of 160- and 75-Å particles in the glial fracture faces occurs prior to the appearance of tight junctions between glial loops and prior to compaction. Though the paranodes on each side of most nodes observed developed symmetrically, some asymmetric half-nodes have been observed.  相似文献   

2.
Action potential conduction in myelinated nerve fibers depends on a polarized axonal membrane. Voltage-gated Na(+) and K(+) channels are clustered at nodes of Ranvier and mediate the transmembrane currents necessary for rapid saltatory conduction. Paranodal junctions flank nodes and function as attachment sites for myelin and as paracellular and membrane protein diffusion barriers. Common molecular mechanisms, directed by myelinating glia, are used to establish these axonal membrane domains. Initially, heterophilic interactions between glial and axonal cell adhesion molecules define the locations where nodes or paranodes form. Subsequently, within each domain, axonal cell adhesion molecules are stabilized and retained through interactions with cytoskeletal and scaffolding proteins, including ankyrins and spectrins.  相似文献   

3.
Saltatory electric conduction requires clustered voltage-gated sodium channels (VGSCs) at axon initial segments (AIS) and nodes of Ranvier (NR). A dense membrane undercoat is present at these sites, which is thought to be key for the focal accumulation of channels. Here, we prove that betaIVSigma1 spectrin, the only betaIV spectrin with an actin-binding domain, is an essential component of this coat. Specifically, betaIVSigma1 coexists with betaIVSigma6 at both AIS and NR, being the predominant spectrin at AIS. Removal of betaIVSigma1 alone causes the disappearance of the nodal coat, an increased diameter of the NR, and the presence of dilations filled with organelles. Moreover, in myelinated cochlear afferent fibers, VGSC and ankyrin G clusters appear fragmented. These ultrastructural changes can explain the motor and auditory neuropathies present in betaIVSigma1 -/- mice and point to the betaIVSigma1 spectrin isoform as a master-stabilizing factor of AIS/NR membranes.  相似文献   

4.
5.
6.
The HNK-1 and L2 monoclonal antibodies are thought to recognize identical or closely associated carbohydrate epitopes on a family of neural plasma membrane glycoproteins, including myelin-associated glycoprotein, the neural cell adhesion molecule, and the L1 and J1 glycoproteins, all of which have been postulated to play a part in mediating cell-cell interactions in the nervous system. We have used these two antibodies in immunofluorescence and immunogold-electron microscopic studies of semithin and ultrathin frozen sections of adult rat optic nerve, respectively, and we show that they bind mainly to astrocyte processes around nodes of Ranvier. Most other elements of the nerve, including astrocyte cell bodies and large astrocytic processes, are not labeled by the antibodies. To our knowledge, this is the first demonstration that perinodal astrocyte processes are biochemically specialized. We provide evidence that one of the HNK-1+/L2+ molecules concentrated around perinodal astrocyte processes is the J1 glycoprotein; our findings, taken together with previously reported observations, suggest that the other known HNK-1+/L2+ molecules are not concentrated on these processes. Since anti-J1 antibodies previously have been shown to inhibit neuron to astrocyte adhesion in vitro, we hypothesize that J1 may play an important part in the axon-glial interactions that presumably are involved in the assembly and/or maintenance of nodes of Ranvier.  相似文献   

7.
High densities of ion channels at axon initial segments (AISs) and nodes of Ranvier are required for initiation, propagation, and modulation of action potentials in axons. The organization of these membrane domains depends on a specialized cytoskeleton consisting of two submembranous cytoskeletal and scaffolding proteins, ankyrinG (ankG) and betaIV spectrin. However, it is not known which of these proteins is the principal organizer, or if the mechanisms governing formation of the cytoskeleton at the AIS also apply to nodes. We identify a distinct protein domain in betaIV spectrin required for its localization to the AIS, and show that this domain mediates betaIV spectrin's interaction with ankG. Dominant-negative ankG disrupts betaIV spectrin localization, but does not alter endogenous ankG or Na(+) channel clustering at the AIS. Finally, using adenovirus for transgene delivery into myelinated neurons, we demonstrate that betaIV spectrin recruitment to nodes of Ranvier also depends on binding to ankG.  相似文献   

8.
9.
Efficient and rapid propagation of action potentials in myelinated axons depends on the molecular specialization of the nodes of Ranvier. The nodal region is organized into several distinct domains, each of which contains a unique set of ion channels, cell-adhesion molecules and cytoplasmic adaptor proteins. Voltage-gated Na+ channels - which are concentrated at the nodes - are separated from K+ channels - which are clustered at the juxtaparanodal region - by a specialized axoglial contact that is formed between the axon and the myelinating cell at the paranodes. This local differentiation of myelinated axons is tightly regulated by oligodendrocytes and myelinating Schwann cells, and is achieved through complex mechanisms that are used by another specialized cell-cell contact - the synapse.  相似文献   

10.
Asymmetrical displacement currents (Id) in the frog Ranvier node (R. ridibunda) treated with tetrodotoxin and tetraethylammonium were studied by the use of ramp-voltage pulses. In some experiments both ramp- and step-voltage pulses were used. The net Id consists of two components, one of which Id (I) can be blocked by local anesthetic trimecaine, or inactivated with the 10 ms depolarizing prepulse sufficiently large to inactivate the sodium current in the same node (before Na+ removal and TTX application). Parameters of the steady state charge distribution are very close (though not identical) to that of the peak sodium permeability vs. potential relation. The charge carrying Id (I) is estimated as 0.3--0.5 of the net displaced charge. The results suggest that trimecaine- and inactivation-sensitive component of Id may be the true gating current of Na+ channels.  相似文献   

11.
Summary Using a special albumin technique, nodes of Ranvier have been examined within frog skeletal muscle, sciatic nerve and rat and frog cerebrum. Initial segments have been examined in cerebrum of frog and rat. Microtubules usually run longitudinally through these regions, but within the bare area of the intramuscular node of Ranvier, annular or helical bundles of microtubules run in a marginal band at right angles to the more centrally placed longitudinal microtubules. These nodal bare areas show a pronounced convexity and it is suggested that the annular microtubules serve to maintain this convexity during muscle contraction.Dr. Westrum is an affiliate of the CDMRC, University of Washington and a recipient of a Wellcome Trust (U.K.) Burroughs Wellcome Fund (U.SA.) Research Travel Grant. This research was also supported, in part, by NIH research Grants NS 09678 and NS 04053 from the NINCDS and DE 04942 from the NIDR, USPHS/DHEW. The authors also wish to thank Julie Barron for excellent technical assistance  相似文献   

12.
Lectin-horseradish peroxidase conjugates were used to study glycoconjugates in paraffin sections of dorsal roots of the rat spinal cord. Griffonia simplicifolia-B4 isolectin (GSA I-B4) and peanut agglutinin (PNA) stained strongly the nodes of Ranvier, localizing, respectively, terminal alpha- and beta-D-galactose. Sialidase digestion did not increase staining with PNA at the node of Ranvier, suggesting the presence of a neutral glycoconjugate. Staining of the nodal but not the internodal axolemma was observed with PNA. The outer surface of the myelin sheath in axons of the dorsal root stained strongly with GSA I-B4 but only weakly with PNA, demonstrating an abundance of terminal alpha-galactose. PNA staining was enhanced in this site by sialidase digestion, showing terminal sialic acid-beta-galactose dimers. The presence of sialic acid here was further evidenced by labeling of these membranes with the lectin derived from the slug, Limax flavus (LFA). Affinity for a high iron diamine-Alcian blue (pH 2.5) sequence demonstrated, in addition, the presence of sulfate esters in glycoconjugates on the outer myelin membrane. GSA I-B4 imparted strong reactivity to nonmyelinated fibers in the dorsal root and the spinal nerve. The present findings appear to reflect several localizations of biochemically described nervous system glycoproteins containing O-glycosidically linked side chains terminated by alpha- and beta-D-galactose.  相似文献   

13.
14.
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.  相似文献   

15.
Summary Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.  相似文献   

16.
17.
18.
Brevican is known to be an abundant extracellular matrix component in the adult brain and a structural constituent of perineuronal nets. We herein show that brevican, tenascin-R (TN-R) and phosphacan are present at the nodes of Ranvier on myelinated axons with a particularly large diameter in the central nervous system. A brevican deficiency resulted in a reorganization of the nodal matrices, which was characterized by the shift of TN-R, and concomitantly phosphacan, from an axonal diameter-dependent association with nodes to an axonal diameter independent association. Supported by the co-immunoprecipitation results, these observations indicate that the presence of TN-R and phosphacan at nodes is normally brevican-dependent, while in the absence of brevican these molecules can also be recruited by versican V2. The versican V2 and Bral1 distribution was not affected, thus indicating a brevican-independent role of these two molecules for establishing hyaluronan-binding matrices at the nodes. Our results revealed that brevican plays a crucial role in determining the specialization of the hyaluronan-binding nodal matrix assemblies in large diameter nodes.  相似文献   

19.
Axon initial segments (AISs) and nodes of Ranvier are sites of action potential generation and propagation, respectively. Both domains are enriched in sodium channels complexed with adhesion molecules (neurofascin [NF] 186 and NrCAM) and cytoskeletal proteins (ankyrin G and betaIV spectrin). We show that the AIS and peripheral nervous system (PNS) nodes both require ankyrin G but assemble by distinct mechanisms. The AIS is intrinsically specified; it forms independent of NF186, which is targeted to this site via intracellular interactions that require ankyrin G. In contrast, NF186 is targeted to the node, and independently cleared from the internode, by interactions of its ectodomain with myelinating Schwann cells. NF186 is critical for and initiates PNS node assembly by recruiting ankyrin G, which is required for the localization of sodium channels and the entire nodal complex. Thus, initial segments assemble from the inside out driven by the intrinsic accumulation of ankyrin G, whereas PNS nodes assemble from the outside in, specified by Schwann cells, which direct the NF186-dependent recruitment of ankyrin G.  相似文献   

20.
Aggregation of TAR DNA binding protein-43 (TDP-43) is a hallmark feature of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Under pathogenic conditions, abnormal cleavage of TDP-43 produces the phosphorylated C-terminal fragments (CTFs), which are enriched in neuronal inclusions; however, molecular properties of those TDP-43 fragments remain to be characterized. Here we show distinct degrees of solubility and phosphorylation among fragments truncated at different sites of TDP-43. Truncations were tested mainly within a second RNA recognition motif (RRM2) of TDP-43; when the truncation site was more C-terminal in an RRM2 domain, a TDP-43 CTF basically became less soluble and more phosphorylated in differentiated Neuro2a cells. We also found that cleavage at the third β-strand in RRM2 leads to the formation of SDS-resistant soluble oligomers. Molecular properties of TDP-43 fragments thus significantly depend upon its cleavage site, which might reflect distinct molecular pathologies among sub-types of TDP-43 proteinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号