首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that human CD8-positive T cells activated by immobilized mAb to the CD3 complex have the capacity to support the generation of Ig secreting cells (ISC). The experiments reported here were undertaken to examine the nature of CD8+ T cell helper function in greater detail. CD8+ T cells that had been treated with mitomycin C (CD8+ mito) and stimulated by immobilized mAb to CD3 (64.1) provided help for the generation of ISC from resting B cells. By contrast, CD8+ mito did not support the generation of ISC in cultures stimulated by pokeweed mitogen (PWM). This could not be explained by differences in the production of IL2, since PWM and anti-CD3 induced comparable amounts of IL2 from CD8+ mito. In anti-CD3-stimulated cultures, CD8+ mito supported the generation of larger numbers of ISC when B cells were also activated with Staphylococcus aureus (SA). By contrast, in PWM-stimulated cultures, CD8+ mito did not provide help for SA-activated B cells. Rather, PWM-stimulated CD8+ mito appeared to suppress the generation of ISC induced by PWM-activated CD4+ mito or by SA + IL2, whereas anti-CD3-stimulated CD8+ mito did not. Only control CD8+ T cells, which were able to proliferate, exerted suppressive effects in anti-CD3-stimulated cultures. Examination of the functional capacities of a battery of CD8+ T cell clones indicated that the same clonal population of CD8+ cells could provide help or suppress responses when stimulated with anti-CD3 or PWM, respectively. The functional activities of CD8+ clones differed from those of fresh CD8+ cells. Thus, anti-CD3-stimulated CD8+ clones provided help for B cells regardless of whether they were treated with mitomycin C. Moreover, PWM stimulated suppression by CD8+ clones was abrogated by treating the clones with radiation or mitomycin C. These results indicate that helper T cell function is not limited to the CD4+ T cell population, but that help can also be provided by appropriately stimulated CD8+ T cells. Taken together, these results indicate that CD8+ T cells are not limited in their capacity to regulate B cell responses, but rather can provide positive or negative influences depending on the nature of the activating stimulus.  相似文献   

2.
Induction of CD4 suppressor T cells with anti-Leu-8 antibody   总被引:6,自引:0,他引:6  
To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody.  相似文献   

3.
The immunoregulatory functions of human T4 cell subpopulations defined by mAb to the CD45R molecule (2H4) were examined. Both CD45R- and CD45R+ T4 cells that had been treated with mitomycin C (CD45R- and CD45R+ T4-mito) provided help for the generation of Ig-secreting cells (ISC) in cultures stimulated by PWM or by immobilized mAb to CD3 (64.1). IL-2 enhanced the generation of ISC in PWM-stimulated cultures and in anti-CD3-stimulated cultures containing CD45R+ T4-mito. The generation of ISC was maximal in cultures containing anti-CD3-activated CD45R- T4-mito and was not increased by IL-2. By contrast, CD45R+ T4 cells that had not been treated with mitomycin C suppressed B cell responses in cultures stimulated with PWM or anti-CD3, whereas CD45R- T4 cells suppressed the generation of ISC only in cultures stimulated with anti-CD3. IL-2 enhanced suppression by anti-CD3, but not PWM, activated CD45R- T4 cells. Suppression by CD45R+ T4 cells was maximal and not increased by IL-2. CD45R+ T4-mito were more effective suppressor-inducers in PWM-stimulated cultures, promoting the differentiation of suppressor-effector cells from CD8+ T cells. However, both CD45R+ and CD45R- T4-mito exerted comparable suppressor-inducer function in anti-CD3-stimulated cultures. Moreover, in anti-CD3-stimulated cultures, T8 cells could function as both suppressor-effector cells and suppressor-inducer cells. One of the functions of suppressor-inducer cells in this system appeared to involve the production of IL-2. Thus, the addition of IL-2 facilitated the induction of suppressor-effector T8 cells by CD45R- T4-mito in PWM-stimulated cultures. Although IL-2 production by the T cell subsets varied widely depending on the nature of the stimulus, these differences could not entirely explain their capacity to function as helper cells, suppressor-effector cells or suppressor-inducer cells. These results indicate that both CD45R+ and CD45R- T4 cells can help or suppress B cell responses, as well as induce suppressor-effector T8 cells. Moreover, suppressor-inducer function of T cells is not limited to the T4 cell population, but rather can also be accomplished by T8 cells. The results indicate that both T4 cell subsets and T8 cells exert multiple regulatory effects on human B cell function, with the nature of the activating stimulus playing a major role in determining the functional capacity of various T cell subsets.  相似文献   

4.
Human helper-T-cell function does not require T4 antigen expression   总被引:2,自引:0,他引:2  
The relationship between immunoregulatory T-cell function and the expression of T-cell subset-specific differentiation antigens was examined using a phenotypically anomalous human T-cell line (TCL), termed H-1. H-1 cells were found to express T11, extremely high levels of T3, but no T4 nor T8 antigen. Despite their lack of T4 antigen expression, H-1 cells could be activated by coculture with pokeweed mitogen (PWM), anti-T3 antibody, or autologous B cells to provide potent help for B-cell differentiation into plaque-forming cells (PFC). In contrast, H-1 cells did not suppress the PFC response triggered by PWM-activated T4+ cells. These results demonstrate that the expression of the T-cell subclass-specific differentiation antigen, T4, is not required for a T cell to become activated and to implement the program for helper function. In addition, enhanced expression of T3 on the T4-, T8-, H-1 cell surface may reflect a compensatory upregulation of the T3/Ti receptor complex on T cells which are deficient in these nonpolymorphic associative recognition structures.  相似文献   

5.
To understand further the biologic significance of the autologous mixed lymphocyte reaction, we determined the functional properties of autoreactive T cell lines and clones. Initially, we found that cells in an uncloned autoreactive Leu-3+ T cell line helped immunoglobulin production when added to cultures containing fresh T and non-T cells in the absence of pokeweed mitogen (PWM) but suppressed immunoglobulin production in the same cultures in the presence of PWM. To explain this phenomenon, we studied the immunoregulatory potential of an autoreactive T cell clone termed MTC-4. This clone bore the phenotype Leu-3+, 2-, 8-, 11-, DR+ and underwent proliferation when co-cultured with autologous, but not allogeneic non-T cells. Of interest, the immunoregulatory potential of the MTC-4 cells varied according to how the cells were activated. When MTC-4 cells were cultured with autologous non-T cells in the absence of antigen or mitogen (unactivated non-T cells), polyclonal immunoglobulin production (detected by reverse PFC assay) was observed. This helper activity was MHC-restricted in that it was elicited only by autologous non-T cells or MHC-matched allogeneic non-T cells; however, once activated by autologous non-T cells, it could also help allogeneic non-T cells. In contrast, when MTC-4 cells were cultured with autologous non-T cells in the presence of PWM (activated non-T cells), immunoglobulin production was greatly suppressed. This suppression was also observed when MTC-4 cells were added to cultures containing exogenous T cell help (such as that provided by autologous fresh T cells) and was not due to a direct effect of PWM on the T cell clone, because preincubation of MTC-4 cells with PWM before culture with non-T cells did not result in suppression. On the basis of these data, we conclude that autoreactive T cells can have dual immunoregulatory function that is manifest, at least in part, at the single cell level. Moreover, these regulatory functions are differentially elicited depending on the state of activation of the stimulating autologous non-T cells: when stimulated by MHC antigens present on unactivated B cells, they provide helper activity; and when stimulated by MHC antigens present on activated B cells, they act as suppressor cells. Autoreactive T cells with dual regulatory potential appear to make up a substantial proportion of all autoreactive T cells and are cells that are uniquely adapted to maintain immunologic homeostasis.  相似文献   

6.
Serial phenotyping of human peripheral blood mononuclear cells (PBMC) cultured with pokeweed mitogen (PWM) demonstrated an excess of T8+ cells after stimulation. Preferential expansion of the T8+ cell compartment was a result of T8+ cell blast transformation while T4+ cells generated fewer blasts and tended to remain as small resting cells. When the proliferative behavior of T cell subsets in PWM-stimulated PBMC with physiologic proportions of T4+ and T8+ cells was compared with that of cultures depleted of T4+ or T8+ cells, two levels of regulation of proliferation were found: without T4+ cell help, T8+ cells were unable to divide; however, in the presence of T4+ cells, PWM-stimulated T8+ cells became potent feedback inhibitors of T4+ cell proliferation. The mechanism of suppression by PWM-activated T8+ cells of T4+ cell proliferation, not only to PWM, but also to tetanus toxoid, was pursued by measuring decreased interleukin 2 (IL2) recovery from cultures containing suppressors. Although passive absorption of IL2 by PWM-activated cells could contribute to the suppression of fresh proliferative responses, as shown directly with isolated T4+ cells induced by PWM to express IL2 receptors, a much more profound suppression was mediated by PWM-activated T8+ cells. The regulation of proliferative responses of helper and suppressor T cell subsets may determine the magnitude of their subsequent interactions and thus control the ultimate outcome of in vivo physiologic and pathologic immune responses.  相似文献   

7.
In the present report we extended our previous studies demonstrating that obligatory T-T interactions are important in regulating human immune responses in vitro. Functionally distinct human T cell subsets were isolated by complement-mediated lysis using the monoclonal antibodies OKT4 and OKT8. Evidence was obtained that during allogeneic interactions, OKT4+, but not OKT8+, responder T cells are required to generate helper factor(s) capable of polyclonally activating human B cells independent of additional T cell help. Importantly, the alloantigen-induced helper factor(s) production and/or release was found to be suppressed by addition of graded numbers of radiosensitive OKT8+ cells. On the other hand, no evidence was obtained that supernatant derived from alloactivated OKT8+ cells could counterbalance the helper activity generated in the presence of supernatant from alloactivated OKT4+ cells. Furthermore, OKT8+ cells, known to suppress PWM-driven B cell differentiation in the presence of OKT4+ cells, do not suppress B cell differentiation induced by preformed helper factor even in the presence of OKT4+ cells. These data further underscore the importance of functional T-T interactions in immunoregulation in vitro and support the idea that the target of suppression of B cell differentiation, induced either by alloantigen-triggered helper factor or PWM, are OKT4+ cells and not B cells themselves.  相似文献   

8.
In the present study, we show that human self-MHC-reactive (autoreactive) T cell clones are functionally distinct from Ag-specific T cell clones. Self-MHC-reactive T cells exhibited helper function for B cell Ig production when cultured with non-T cells alone, and they exhibit suppressor function when cultured with PWM- or rCD40 ligand (rCD40L)-activated non-T cells, whereas tetanus toxoid (TT)-specific clones exhibited only helper function in the presence of TT with or without PWM or rCD40L. Addition of neutralizing Abs to the cultures showed that the suppression was mediated by TGF-beta but not by IL-10 or IFN-gamma. The self-MHC-reactive clones also inhibited proliferation of primary CD4+ T cells and TT-specific T cell clones, but in this case the inhibition was mediated by both IL-10 and TGF-beta. In further studies, the interactions between self-MHC-reactive T cell clones and non-T cells that led to suppressor cytokine production have been explored. We found that prestimulation of non-T cells for 8 h with PWM or for 48 h for rCD40L results in non-T cells capable of inducing self-MHC-reactive T cell to produce high levels of TGF-beta and IL-10. In addition, these prestimulation times coincided with peak induction of HLA-DR and costimulatory B7 molecule (especially CD86) expression on B cells. Finally, addition of CTLA-4/Fc or blocking F(ab')2 anti-CTLA-4 mAb, plus optimally stimulated non-T cells, to cultures of self-MHC-reactive clones inhibited the induction of TGF-beta but not IL-10 or IFN-gamma production. In summary, these studies show that activated self-MHC-reactive T cells have the cytokine phenotype of Th3 or T regulatory cell 1 and thus may be important regulatory cells that mediate oral and peripheral tolerance and prevent the development of autoimmunity.  相似文献   

9.
Human B lymphocytes can be induced to differentiate into antibody-secreting plasma cells by Leu-3+ T lymphocytes stimulated with pokeweed mitogen (PWM), a polyclonal T cell activator. In contrast, other polyclonal T cell mitogens, such as phytohemagglutinin (PHA), also activate Leu-3+ T cells but are relatively ineffective inducers of B cell differentiation. We have performed a series of experiments to investigate the mechanism underlying this apparent paradox. When human B cells were cultured with unfractionated T cells and PWM or PHA, only PWM was able to induce plasma cell formation and immunoglobulin (Ig) secretion. However, when the T cells were treated with mitomycin C (MMC) before culture, both PWM and PHA were able to induce significant B cell differentiation. These data indicated that both mitogens were able to activate the helper T cells required for B lymphocyte differentiation and suggested that MMC-sensitive suppressor T cells were responsible for inhibiting the induction of antibody-secreting cells by MMC-untreated T cells stimulated with PHA. Phenotypic analysis of the T cells capable of suppressing PHA-induced B cell differentiation revealed that small numbers of either Leu-2+ or Leu-3+ T cells could profoundly suppress the B cell differentiation induced by PHA. In contrast, significant suppression of PWM-stimulated B cell differentiation was observed only with relatively large numbers of Leu-2+ T cells. These data confirm previous reports that OKT4+/Leu-3+ T cells can suppress human B cell differentiation and indicate that the difference in B cell differentiation induced by PWM and PHA with MMC-untreated T cells is largely a reflection of the relative potency of these mitogens to activate these phenotypically distinct suppressor T cell subpopulations.  相似文献   

10.
L Spatz  N Latov 《Cellular immunology》1986,103(2):434-440
Four patients with peripheral neuropathy and nonmalignant monoclonal gammopathy with anti-myelin-associated glycoprotein (MAG) antibodies were studied to determine whether secretion of anti-MAG IgM antibodies by B cells was autonomous, or whether the monoclonal B cells were responsive to T cells. Secretion of anti-MAG IgM by isolated B cells was stimulated by the addition of increasing numbers of pokeweed mitogen (PWM)-activated autologous OKT4+ helper T cells in all four patients. Secretion of anti-MAG IgM by peripheral blood lymphocytes was dependent on the ratio of OKT4+ T helper cells to OKT8+ T suppressor/cytotoxic cells. In three patients with an OKT4+ to OKT8+ T-cell ratio of 2:1, PWM activation stimulated secretion of anti-MAG IgM; in one patient with an OKT4+ to OKT8+ ratio of 1:2, activation by PWM suppressed anti-MAG IgM secretion. These studies suggest that the monoclonal B cells that secrete anti-MAG IgM are responsive to regulatory T cells.  相似文献   

11.
Resembling the in vitro antibody response of the newborn cultures of cord blood lymphocytes stimulated with pokeweed mitogen (PWM) generated fewer plasma cells (PC) than comparable adult lymphocyte cultures and the response was almost exclusively of the IgM class. We investigated the cellular basis of this difference by preparing mixed cultures of newborn T or B lymphocytes with adult B or T cells. Substitution of adult for newborn T cells enhanced the response of newborn B cells, particularly of the IgG and IgA classes. The response of second trimester fetal spleen cells was also increased by adult T cells, although no IgA PC appeared. Conversely, adult B cells generated fewer PC particularly of the IgG and IgA classes when cultured with newborn T cells. The relatively poor IgA and IgG responses of newborn cells seems partially but not entirely due to deficiency of T cell helper function. Suppressor activity of newborn T cells was investigated by adding excess unrelated newborn or adult T cells to adult T + B cells: adult T cells improved the response whereas newborn T cells were variably suppressive. The results indicate that newborn T cells, although capable of helper function, are balanced toward suppression.  相似文献   

12.
Development of an antigen-specific CD8 suppressor effector clone in man   总被引:2,自引:0,他引:2  
A long-term cultured IL-2-dependent keyhole limpet hemocyanin (KLH)-specific CD8 (T8) suppressor clone (5B9) was generated from a healthy donor hyperimmunized with KLH. The 5B9 clonal population suppressed in vitro anti-KLH antibody response but did not suppress anti-TT antibody response or PWM-driven IgG synthesis. Moreover, 5B9 cells could not suppress anti-TT antibody response even in the presence of free KLH. 5B9 cloned cells suppressed the anti-KLH antibody response of B cells cultured with CD4+4B4+ cells without requiring the presence of CD8+ cells. This KLH-specific CD8 suppressor clone is an effector type rather than an inducer type of suppressor T cell. The cloned cells expressed alpha- and beta-TCR proteins (defined by WT-31 antibody) on their cell surface. More importantly, the CD3:TCR complex was functionally important in the suppression induced by this clone, because after CD3 antigen modulation from its cell surface, the suppressor effector function was abolished.  相似文献   

13.
The ability of splenic T-cells to regulate Friend murine leukemia virus replication in lipopolysaccharide-activated target B-cells infected in vitro was investigated. Removal of the T-cell fraction from spleen cells resulted in an 8- to 10-fold enhancement in the number of productively infected cells in the remaining B-cell-enriched fraction, as compared with unseparated spleen cells, and the addition of increasing numbers of purified T-cells to isolated B-cells prior to infection resulted in a directly proportional reduction in the number of B-cells releasing infectious progeny virus. Separation of splenic T-cells into Lyt 2- and Lyt 2+ T-cells before addition to infected B-cell cultures resulted in inhibition of infection only with the Lyt 2- T-cells; Lyt 2+ T-cells did not inhibit infection, even at high 1:1 ratios. Similarly, separation of splenic T-cells into L3T4+ and L3T4- T-cells before addition resulted in inhibition by L3T4+ but not L3T4- T-cells. Also, cytotoxic treatment of splenic T-cells with monoclonal anti-L3T4 antibody and complement before addition to B-cell cultures destroyed the regulatory effects. Finally, depletion of macrophages from both T-cells and B-cells before infection and coculture had no effect on the ability of T-cells to regulate B-cell infection. Collectively these results demonstrate that L3T4+ T-cells can inhibit Friend murine leukemia virus replication in target B-cells. Culture of isolated splenic T-cells with Friend murine leukemia virus in vitro resulted in the induction of alpha/beta but not interferon-gamma synthesis and in some experiments interferon-containing supernatants from T-cell-virus cultures were able to mediate suppression of B-cell infection with Friend helper virus; the addition of antibody specific for interferon-alpha/beta to cultures inhibited the ability of T-cells to regulate B-cell infection.  相似文献   

14.
The induction of peripheral blood B lymphocytes to mature to immunoglobulin-secreting cells (ISC) when stimulated by Staphylococcus aureus strain Cowan I was found to be T helper cell-dependent (J. Immunol.127, 1044, 1981). The nature of T help was studied in B- and T-cell separation and reconstitution experiments. T helper cells for Cowan I were very radiosensitive (D37 < 500 rad) in comparison to helpers for pokeweed mitogen (PWM) (D37 > 2000 rad). PWM synergized with Cowan I in induction of ISC, and helper T cells for dual stimulation were also radioresistant. The ratio of T to B cells was found to be critical in judging reactivity of donors for both PWM and Cowan I. T cells stimulated with PWM, but not Cowan I, produced T cell-replacing factors essential for Cowan I-induced maturation of B cells. Irradiation of T cells prior to PWM stimulation increased the level of such helper factors. Poor responders to Cowan I, as judged by mononuclear cell cultures, had apparently few helpers for the bacterial stimulant, compared to high responders. Cowan I helper T-cell activity did not appear to be due to protein A leaking from the bacteria and stimulating T cells. In all these experiments, induction of ISC by Cowan I was completely dependent on T cells or factor, providing a good model for investigation of B-cell differentiation regulated by a unique subset of radiosensitive T helper cells.  相似文献   

15.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

16.
Ly-2+ effectors of T cell-mediated suppression require inducing signals from antigen and a helper cell bearing the Ly-1+:Qa1+ surface phenotype. In this report, we have further examined the helper cell requirements for suppressor cell induction of antibody production in mice. By using the T cell subset education procedure in vitro, we have activated T cells to sheep red blood cells (SRBC) antigens and then purified Ly-2 cells before testing for suppressor activity in assay cultures of defined T and B cell subsets. We have confirmed our previous observations that Ly-1+:Qa1+ cells are required for activation of T suppressors, but have found that under the appropriate conditions, there is not a strict requirement for the Ly-123 subset of T cells. Furthermore, if Ly-23 cells are stimulated in the presence of Ly-1+:Qa1- T cells, effective suppressors can be obtained only if a source of Ly-1:Qa1+ inducers is added to the assay culture. If Ly-23 cells are activated by antigen in the absence of Ly-1 cells, subsequent exposure to the Ly-1+:Qa1+ subset under the conditions tested here is not sufficient to activate suppressors. These results show that effectors of suppression, like B cells and cytotoxic T lymphocytes, may respond to two helper cells.  相似文献   

17.
The multifaceted role of the monocyte in the induction and modulation of antigen-specific antibody responses by human B cells was delineated. Monocytes were absolutely required for the induction of specific antibody responses to both TT and KLH in an antigen-induced in vitro assay. Monocytes were also required for the PWM induction of specific antibody in immunized subjects. Pulsing monocytes with specific antigen or with PWM consistently stimulated proliferation of T cells in absence of added antigen and could also stimulate specific antibody synthesis although less consistently. Stimulation of specific antibody responses with antigen required fewer numbers of monocytes than did stimulation of specific antibody responses with PWM. Polyclonal antibody synthesis induced by PWM was also dependent on monocytes. However, polyclonal antibody synthesis induced by supraoptimal concentrations of antigen was usually optimal in the absence of monocytes and was actually suppressed when increased numbers of monocytes were added to monocyte-depleted cultures. Monocyte supernatants could not replace the absolute requirements for monocytes in the induction of specific antibody synthesis. However, monocyte supernatants could profoundly modulate the antigen-specific as well as the polyclonal Ig response of lymphocytes to either antigen or PWM stimulation in a manner closely resembling monocytes themselves. Thus, we demonstrated that monocytes and their products play a critical role in the activation and immunoregulation of antigen-specific antibody responses of human B cells.  相似文献   

18.
Staphylococcal protein-A (SPA) and Staphylococcus aureus are known to be polyclonal human B-cell activators. It was noted that they induced plaque-forming-cell (PFC) responses lower than those induced by pokeweed mitogen (PWM) and the possibility of early triggering of a suppressor cell was investigated in the present series of experiments. Peripheral mononuclear cells (MNC) were passed through Sephadex G-10 columns to eliminate monocytes. The PFC responses to SPA and S. aureus were thereby increased. PWM-driven PFC responses are suppressed by the simultaneous presence of SPA in a dose-related way, if present in the early phases of the cultures. MNC precultured with SPA or S. aureus have the ability to suppress the PFC response of autologous MNC to PWM. Interestingly this suppressor cell activity was radiation resistant and could not be abrogated by treatment with anti-T-cell monoclonal antibody plus complement. The above experiments clearly demonstrate that the observed low PFC responses of MNC after stimulation with SPA and S. aureus are due to the induction of suppressor cells by these stimulants. The suppressor cells are apparently of monocytic origin.  相似文献   

19.
T cell subsets from virgin and immunized mice, which are Ir gene controlled nonresponders to GAT, which regulate antibody responses to GAT have been characterized. Virgin nonresponder B10.Q B cells develop GAT-specific antibody responses to GAT, B10.Q GAT-M phi, and GAT-MBSA when cultured with virgin or GAT-primed Lyt-1+, I-J-, Qa1- B10.Q helper T cells. Virgin T cells are radiosensitive, whereas immune T cells are radioresistant (750 R); qualitatively identical helper activity is obtained with T cells from mice immunized with soluble GAT, B10.Q GAT-M phi, and GAT-MBSA. Responses to GAT and GAT-M phi are not observed when virgin or GAT-primed Lyt-1+, I-J+, Qal+ T cells are added to culture of virgin or GAT-primed Lyt-1+, I-J-, Qa1- helper T cells and virgin B cells; the GAT-specific response to GAT-MBSA is intact. The Lyt-1+, I-J+, Qa1+ T cells from mice primed with GAT, GAT-M phi, and GAT-MBSA were qualitatively identical in mediating this suppression. Virgin Lyt-2+ T cells have no suppressive activity alone or with virgin Lyt-1+, I-J+, Qa1+ T cells, whereas responses to GAT, GAT-M phi, and GAT-MBSA are suppressed in cultures of GAT-primed helper T cells containing GAT-primed Lyt-2+ T cells (with or without GAT-primed Lyt-1+, I-J+, Qa1+ T cells). Suppression of responses to GAT-MBSA in cultures of GAT-M phi-primed helper T cells requires both GAT-M phi-primed Lyt-1+, I-J+, Qa1+ T cells and Lyt-2+ T cells; the Lyt-1+, I-J+, Qa1+ T cells appear to function as inducer cells in this case. In cultures containing GAT-MBSA-primed helper T cells, either GAT-MBSA-primed Lyt-1+, I-J+, Qa1+ or Lyt-2+ T cells suppress responses to GAT and GAT-M phi; under no circumstances are responses to GAT-MBSA suppressed by GAT-MBSA-primed regulatory T cells. This regulation of antibody responses to GAT by suppressor T cells is discussed in the context of the involvement of suppressor T cells in responses to antigens under Ir control, and of the evidence that nonresponsiveness to GAT is not due to a defect in the T cell repertoire, but rather is due to an imbalance in the activation of suppressor vs helper T cells.  相似文献   

20.
Helper and suppressor functions of human T lymphocytes that act on antibody-forming B cells were elicited by a large 185K streptococcal cell wall antigen. However, a small 4K streptococcal peptide elicited helper but no suppressor function. These differences in the functional activities of the large and small m.w. streptococcal antigens (SA) were confirmed by direct immunisation of rhesus monkeys with the 185K-SA and 4K-SA. Sequential studies have shown that whereas the 185K-SA elicits dose-dependent helper and suppressor activities, the 4K-SA elicits only helper function. Cell-depletion studies with human cells suggest that removal of T8+ cells by killing with OK.T8 and complement leads to a loss of suppressor and a broadening in the concentration of 185K-SA, which elicits helper activity. Because the 4K-SA does not elicit suppression, removal of T8+ cells does not affect this function. However, similar depletion of T4+ cells results in loss of the helper activities, both with the 185K-SA and 4K-SA, and again a broadening in the concentration of the 185K-SA, which elicits suppression. Direct comparison by autoradiography between 125I-labeled 185K-SA and 4K-SA suggests that both antigens can bind directly to monocytes or T8+ VV+ cells. Furthermore, both antigens can induce helper function if T4+ cells are reconstituted with either monocytes or T8+ VV+ cells. Attempts will now be made to sequence the amino acid determinants of the 185K-SA, so as to define the epitopes responsible for the two major regulating functions elicited by this antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号