首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Swiss stone pine Pinus cembra L. is a species with fragmented range, occurring in the Alpine-East Carpathian mountain system. Seeds of P. cembra are dispersed by nutcrackers, which offers potential possibilities for gene exchange among populations. Using isozyme analysis, we have examined five samples from two parts of the Swiss stone pine range: the Alps (Switzerland and Austria) and the Carpathians (two samples from the northern macroslope of the Gorgany Ridge, Eastern Carpathians, Ivano-Frankovsk oblast and one sample from Trans-Carpathian oblast of Ukraine). The allele frequencies of 30 isozyme loci, coding for enzymes ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6PGD, PGI, PGM, SDH, SKDH, SOD, were analyzed using cluster analysis and methods of principal components. Two clusters, corresponding to the isolated Alpine and Carpathian parts of the range, were found. The main contribution to these differences were made by loci Adh-1, Adh-2, Fest-2, Lap-3, Mdh-4, and Sod-4. The interpopulation differentiation proved to be somewhat higher than that typical for pines (F(ST) = 7.4%), but within the limits characteristic for taxonomically close species. Thus, isolation of the populations did not lead to their marked differentiation, which may be explained by gene flow and balancing selection, which equalizes gene frequencies across the fragmented species area. Interlocus F(ST) heterogeneity (from 0.003 to 0.173) suggests adaptive significance of some of the allozyme polymorphisms or linkage of some loci with adaptive genes. The Carpathian populations were shown to have higher gene diversity than the Alpine ones (expected heterozygosities 0.095-0.114 and 0.060-0.080, respectively). A deficit of heterozygotes (as compared to the Hardy-Weinberg proportions), observed in the embryo sample, was probably explained by inbreeding. The reduction in the area of Carpathian pine forests in Holocene, caused by the global climatic changes and the anthropogenic impact, is hazardous for the gene pool of the species. The maintenance of genetic uniqueness of both Carpathian populations of P. cembra in general, and individual stands in particular, requires special measures for protection of Swiss stone pine in the Eastern Carpathians.  相似文献   

2.
Aim In this study, charcoal‐based data for Pinus cembra L. (arolla pine) were gathered from soil and travertine sequences in order to reconstruct its historical biogeography at the landscape level in the inner western Alps during the Holocene. Location The study sites are located between 1700 and 2990 m a.s.l., in the southern (Queyras Massif and Ubaye Valley) and the northern (Maurienne Valley) parts of the inner French Alps. Methods Charcoal fragments were extracted from sediments by water sieving, using meshes of 5, 2, 0.8 and 0.4 mm. The charcoal mass of P. cembra was determined in each charcoal assemblage. Accelerator mass spectrometry and conventional 14C measurements were used to date the fragments. Results Supported by 40 14C datings, the fragments show that, over 2000 m a.s.l., P. cembra accounts for around 40% (mean value) of identified fragments. Data reveal that arolla pine once extended between 260 and 375 m above the present‐day local tree lines. It was established in the southern and the northern French Alps from at least c. 9000 and 6000 cal yr bp , respectively. Main conclusions While present‐day populations of P. cembra are very fragmented in the inner French Alps, charcoal records indicate large past occurrences of this tree since the early Holocene. Human disturbance since the Neolithic seems to be the main reason for the regression of the arolla pine woodlands. On the south‐facing slopes of the study sites, currently deforested, this species extended up to 2800 m a.s.l. In the northern areas, charcoal records of the P. cembra expansion are consistent with the regional pollen archives, but in the southern massifs charcoal records indicate its presence c. 2600 years earlier than other palaeobotanical studies suggest. This discrepancy highlights the necessity to crosscheck data using several different proxies in order to assess the validity of conclusions regarding tree development in space and time.  相似文献   

3.
The geographical structure of mitochondrial (mt)DNA variants (mitotypes) was investigated in 38 western European populations of Scots pine Pinus sylvestris using restriction fragment length polymorphism (RFLP) analysis of total DNA and a homologous cox1 probe. Three major mitotypes (designated a, b and d ) were detected. Within Spain all three major mitotypes were found, gene diversity was high, HT = 0.586, and this diversity was distributed predominantly among rather than within populations (FST(M) = 0.813 for the seven Spanish populations). Mitotype d was present only in the most southerly population from the Sierra Nevada . Elsewhere in Europe, populations showed little or no mtDNA diversity within regions, but there were marked differences between regions. Italian populations were fixed for mitotype b ; populations from northern France, Germany, Poland, Russia and southern Sweden were fixed for mitotype a ; while populations in northern Fennoscandia were fixed for mitotype b . The isolated Scottish populations were predominantly of mitotype a , but mitotype b was present in three of the 20 populations scored. In Scotland, UK gene diversity (HT = 0.120) and genetic differentiation among populations (FST(M) = 0.37) was much lower than in Spain. When interpreted in the light of complementary data from pollen analysis and nuclear genetic markers, the results suggest that present-day populations of P. sylvestris in western Europe have been derived from at least three different sources after glaciation.  相似文献   

4.
Genetic variation in 12 Pinus pinaster (maritime pine) populations spanning most of the distribution range of the species in Portugal was evaluated using six polymorphic chloroplast microsatellite (cpSSR) loci. Thirty-two haplotypes were found. There were indications of very weak differentiation among populations (Weir’s θcoefficient, 0.023), and the R ST value, derived from the stepwise mutation model (SMM), was not significantly different from zero. The pattern, in which similarities in allele size, in base pairs, do not contribute to the genetic structure, may be due to the recent mixing of genetic material from different stands through plantations. Overall, a high level of haplotypic variation within populations was detected. Using the SMM estimator (mean genetic distance of individuals within populations, D 2 sh –––) we divided the populations into two groups, with above and below average values. The first group contained 5 populations, mainly from the central part of the country, which possess, in general, high levels of haplotypic diversity. Among them, 2 populations were divergent from the others based on the pair-wise Nei’s distance. The results indicate that there is no discernible geographic genetic pattern for the Portuguese populations of P. pinaster investigated. The history of expansion of the species range in Portugal during the twentieth century (mainly due to human activity) and extensive gene flow among populations associated with the expansion could explain this finding. Received: 15 February 2000 / Accepted: 14 April 2000  相似文献   

5.
Molecular genetic markers may reveal informative patterns of population processes such as historical migration, which may substantiate inference on postglacial re-colonization inferred, e.g., from fossil records. Palynological records of Swiss stone pine (Pinus cembra) suggest that the species has re-colonized the central Alps from a southeastern Alpine refugium after the last glacial maximum. Such a migration pathway likely resulted in a gradual decrease in genetic diversity with increasing distance to the glacial refugium, owing to founder events at the leading range edge. The present distribution of P. cembra in Switzerland consists of two rather distinct ranges, namely the inner-alpine parts of the Grisons and Valais, respectively, and additional disjunct occurrences in the northern and southern periphery of the Alps as well as between the two main ranges. We screened chloroplast microsatellite loci on 39 Swiss P. cembra populations and show that the genetic structure detected was congruent with a common ancestry from a single glacial refugium, likely located at the (south-)eastern periphery of the Alps. In contrast, our data rejected the alternative hypothesis of a distinct genetic separation of the two main ranges of Swiss stone pine in Switzerland. We further show that low genetic diversity within and high differentiation among peripheral populations in the northern Alps as well as the genetic differentiation between core and peripheral populations reflect genetic drift as a consequence of colonization history and limited gene flow by pollen and seed.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Zusammenfassung  Molekulargenetische Marker enthalten wertvolle Information über Populationsprozesse wie historische Wanderungen, wodurch Annahmen zur postglazialen Wiederbesiedelung, beispielsweise abgeleitet von Fossilfunden, unterstützt werden k?nnen. Palynologische Funde von Arve (Pinus cembra) lassen vermuten, dass diese Art nach dem letzten glazialen Maximum von einem Refugium in den süd?stlichen Alpen wieder in die zentralen Alpen eingewandert ist. Ein solcher Rückwanderungsweg dürfte aufgrund von Gründereffekten an der Wanderungsfront eine graduelle Verringerung der genetischen Variation mit zunehmender Distanz zum Glazialrefugium bewirkt haben. Die heutige Verbreitung von P. cembra in der Schweiz weist zwei deutlich getrennte Gebiete auf, n?mlich inneralpine Bereiche der Kantone Graubünden und Wallis, mit jeweils isolierten Vorkommen in den n?rdlichen und südlichen Randalpen. Wir untersuchten Chloroplasten-Mikrosatelliten in 39 Schweizer Populationen von P. cembra und zeigen, dass die gefundene genetische Struktur übereinstimmt mit der Annahme einer gemeinsamen Abstammung aus einem einzigen Glazialrefugium, welches vermutlich am (süd-)?stlichen Rand der Alpen lag. Im Gegensatz dazu widerlegen unsere Daten die alternative Hypothese einer deutlichen genetischen Trennung der zwei Hauptvorkommen der Arve in der Schweiz. Im Weiteren zeigen unsere Resultate eine geringe genetische Variation innerhalb und einen hohen Differenzierungsgrad zwischen n?rdlichen Randalpenvorkommen, sowie eine genetische Differenzierung zwischen zentralen und peripheren Populationen. Dies weist auf genetische Drift hin, welche die Besiedlungsgeschichte und einen beschr?nkten Genfluss durch Pollen und Samen widerspiegelt.
  相似文献   

6.
In Europe, most of the alpine timberline ecotone has been altered by human activities and climate change. Hence, mountain forests are of the highest conservation interest. Here, we screened 25 populations of Swiss stone pine (Pinus cembra L.) from the Carpathians and the Alps, using a set of ten microsatellite primers to assess the relative conservation value of populations sampled in Polish and Slovak Tatra National Parks, where potential extinction risk is the highest within the Carpathian range. Although endangered, with small and fragmented populations, P. cembra in the Tatra Mts. shows high levels of allelic richness (AR = 5.0) and observed heterozygosity (H o  = 0.554). Our results suggest that anthropogenic habitat fragmentation has had little impact on DNA variation of Swiss stone pine in the Tatra Mts. However, the effects of changing conditions on the genetic structure may occur with a substantial time delay due to the long life span of P. cembra. Moreover, inbreeding depression may occur in the next generations, since we found inbreeding (F IS  = 0.063) and elevated coancestry coefficient (θ = 0.062) in all populations. Also a shallow pattern of genetic differentiation between populations was found, indicating recent fragmentation of a common gene pool that formerly occupied a larger range. Therefore, the Tatra Mts. can be considered as a single conservation unit. Based on our results, we suggest possible conservation activities for Swiss stone pine both in Poland and Slovakia.  相似文献   

7.

Our knowledge of the plant diet of the last European hunter-gatherers is hindered by the difficulties of recording poorly durable plant tissues. One exception is the hazelnut fruit, which preserves well at dry archaeological sites, although usually only in a charred state. Here we give the first evidence for the prehistoric (Mesolithic) use of seeds of the Swiss stone pine, specifically for the time period 8239???7943 cal bc, when this edible seed-bearing tree was an important element of local boreal forests in northern Bohemia, Czech Republic. This local population of Swiss stone pine became extinct at the end of the Early Holocene without leaving modern offspring in the lowlands and middle elevations of central Europe.

  相似文献   

8.
《Flora》2006,201(6):468-476
Alpine and Northern Apennine populations of Pinus sylvestris collected from eight different Italian sites were analyzed by mitochondrial nadI intron and InterSimple Sequence Repeat (ISSR) markers, in order to describe the natural level of genetic variability and to clarify their genetic relationships. The small Northern Apennine populations are the southernmost populations of this conifer in Italy. All the analyzed populations were spontaneous and reforested areas were excluded. The analysis of the polymorphisms in the nad 1 intron sequence confirmed that the Italian P. sylvestris populations have the same mitotype (mitotype a) as the Central European ones. In the genomic ISSR analysis the proportion of shared alleles between the individuals showed the highest degree of differentiation between French and Italian populations and a divergence between the Alpine and Apennine populations. Alpine populations showed a higher genetic variability (GD 0.310±0.0252) than Apennine samples (GD 0.217±0.019). In addition, the individuals from the Apennines did not show a clear population structure, suggesting a common genetic constitution of Apennine P. sylvestris. It is likely that this constitution is the result of a progressive genetic isolation between the Alpine and the Northern Apennine populations from the early Holocene. The genetic constitution of the Northern Apennine populations suggests the opportunity of a management where in situ conservation of such small populations could be coupled to their use as sources of suitable local reforesting materials.  相似文献   

9.
Aim The aim of this study was to test hypotheses regarding some of the main phylogeographical patterns proposed for European plants, in particular the locations of glacial refugia, the post‐glacial colonization routes, and genetic affinities between southern (alpine) and northern (boreal) populations. Location The mountains of Europe (Alps, Balkans, Carpathians, Central Massif, Pyrenees, Scandinavian chain, Sudetes), and central European/southern Scandinavian lowlands. Methods As our model system we used Pulsatilla vernalis, a widely distributed European herbaceous plant occurring both in the high‐mountain environments of the Alps and other European ranges and in lowlands north of these ranges up to Scandinavia. Based on a distribution‐wide sampling of 61 populations, we estimated chloroplast DNA (cpDNA) variation along six regions using polymerase chain reaction–restriction fragment‐length polymorphisms (PCR–RFLPs) (trnH–trnK, trnK–trnK, trnC–trnD, psbC–trnS, psaA–trnS, trnL–trnF) and further sequencing of trnL–trnF and trnH–psbA. In addition, 11 samples of other European species of Pulsatilla were sequenced to survey the genus‐scale cpDNA variation. Results Eleven PCR–RFLP polymorphisms were detected in P. vernalis, revealing seven haplotypes. They formed two distinct genetic groups. Three haplotypes representing both groups dominated and were widely distributed across Europe, whereas the others were restricted to localized regions (central Alps, Tatras/Sudetes mountains) or single populations. Sequencing analysis confirmed the reliability of PCR–RFLPs and homology of haplotypes across their distribution. The chloroplast DNA variation across the section Pulsatilla was low, but P. vernalis did not share haplotypes with other species. Main conclusions The genetic distinctiveness of P. vernalis populations from the south‐western Alps with respect to other Alpine populations, as well as the affinities between the former populations and those from the eastern Pyrenees, is demonstrated, thus providing support for the conclusions of previous studies. Glacial refugia in the Dolomites are also suggested. Isolation is inferred for the high‐mountain populations from the Tatras and Sudetes; this is in contrast to the case for the Balkans, which harboured the common haplotype. Specific microsatellite variation indicates the occurrence of periglacial lowland refugia north of the Alps, acting as a source for the post‐glacial colonization of Scandinavia. The presence of different fixed haplotypes in eastern and western Scandinavia, however, suggests independent post‐glacial colonization of these two areas, with possible founder effects.  相似文献   

10.
A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina , a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.  相似文献   

11.
Black pine chloroplast DNA is 119,707 bp long. The physical map is shown and the genes are listed. Plasmid clones covering the entire DNA sequence have been ordered and available upon request.  相似文献   

12.
In the Alps, larch (Larix decidua Mill.) is severely affected by larch budmoth (Zeiraphera diniana Guénée) (LBM) attacks. The impact of these outbreaks on the Swiss stone pine (Pinus cembra L.) and on the dynamic processes acting in subalpine forest stands are still not well known. Dendroecological methods were used in this study to reconstruct past LBM outbreaks in Susa Valley, Piedmont, Italy. The analysis was carried out on 62 cores from larch and 101 cores from stone pine. The length and severity of each outbreak was quantified for both species and for each tree by means of the programme OUTBREAK. The frequency of the outbreaks was determined using singular spectral analysis and superposed epoch analysis was used to test the significance of the associations between outbreaks and tree-ring growth. In order to verify if trees belonging to different age classes are differently affected by LBM, the reconstructed outbreaks are then classified taking into account the cambial age of the tree at the moment of the outbreak. From 1760 to 1999, 19 outbreaks were recorded in the larch chronologies, while only three outbreaks in the stone pine chronologies. The larch growth is strongly influenced by LBM and the identified outbreaks are equally distributed in all the three age classes. On the stone pine the sporadic occurrence of the identified events made difficult any interpretation of the eventual effect of LBM. Our results lead us to argue that LBM has not played an important role both in determining the stone pine growth rate and in influencing the present observed succession from the stage dominated by larch, to a stage dominated by stone pine or by a mixed stone pine-larch forest.  相似文献   

13.
In order to understand the amount of DNA content variation and its potential roles, both absolute DNA amount and cell cycle phases in 22 half-sib families of jack pine were examined using flow cytometry. When the variability due to differences in speed of germination was taken into account, embryos from superior families (classified on the basis of height growth during field trials) had significantly higher levels of all nuclei classes greater than 4C. Mean DNA contents per nucleus were significantly lower in embryos from superior families compared to inferior ones. Analysis of megagametophyte tissue showed that the mother trees of these embryos expressed a similar pattern. Absolute DNA values were also established on the emerging radicle and the hypocotyl + cotyledons region (HC) separately in five of the families. Nuclei isolated from the emerging radicles had significantly lower levels of DNA than those isolated from the HC region. For three of these families, absolute DNA values from nuclei of the hypocotyl + cotyledons region were established on individual embryos with varying cotyledon numbers. In all three families total DNA amount per nucleus decreased with increasing cotyledon number. A better understanding of differences observed in DNA content during germination, as well as in total DNA content per nuclei among different half-sib families of jack pine, may help in the identification of factors that influence growth and adaptation of this species.  相似文献   

14.
European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum.  相似文献   

15.
Abstract. The kinetics of in vivo chlorophyll fluorescence of photosystem II (PS II) was measured at room temperature and 77 K during frost hardening of seedlings of Scots pine (Pinus sylvestris L.), and after exposure of frost-hardened shoots to sub-freezing temperatures. A more pronounced decrease in variable fluorescence yield for the upper exposed than for the lower shaded surface of the needles suggested that some photoinhibition occurred during prolonged frost hardening at 50 μmol photons m?2 s?1 and 4°C. Reversible inhibition of photosynthesis after exposure to sub-freezing temperatures was initially manifested as an increase of steady-state energy-dependent fluorescence quenching (qE) and a reduction in the rate of O2 evolution. Further inhibition after treatment at still lower temperatures caused a progressive decline of steady-state photochemical quenching (qQ) and the rate of O2 evolution, whereas qE remained high. This implies an inactivation of enzymes in the photosynthetic carbon reduction cycle decreasing the consumption of ATP and NADPH, which is likely to cause an increase of membrane energization and a reduction of the primary electron acceptor (QA) of PS II. Alternatively, the changes in qQ and qE might be attributed to an inhibition of photophosphorylation. Severe, irreversible damage to photosynthesis resulted in a suppression of qE and of variable fluorescence yield, probably because the photochemical efficiency of PS II was impaired. Changes in the fast fluorescence kinetics at room temperature after severe freezing damage were interpreted as an inhibition of the electron flow from QA to the plastoquinone pool. It is suggested that irreversible freezing injury to needles of frost-hardened P. sylvestris causes damage to the QB,-protein.  相似文献   

16.
Ceplitis A  Su Y  Lascoux M 《Molecular ecology》2005,14(14):4221-4233
Besides showing an extraordinary degree of phenotypic variability, Capsella bursa-pastoris (Brassicaceae) is also one of the world's most common plant species and a serious weed in many countries. We have employed a coalescent-based Bayesian analysis of chloroplast microsatellite data to infer demographic and evolutionary parameters of this species. Two different demographic models applied to data from seven chloroplast microsatellite loci among 59 accessions show that the effective population size of C. bursa-pastoris is very small indicating a rapid expansion of the species, a result that is in accordance with fossil and historical data. Against this background, analysis of flowering time variation among accessions suggests that ecotypic differentiation in flowering time has occurred recently in the species' history. Finally, our results also indicate that mononucleotide repeat loci in the chloroplast genome can deteriorate in relatively short periods of evolutionary time.  相似文献   

17.
18.
 Leaf chemistry alterations due to increasing atmospheric CO2 will reflect plant physiological changes and impact ecosystem function. Longleaf pine was grown for 20 months at two levels of atmospheric CO2 (720 and 365 μmol mol–1), two levels of soil N (4 g m–2 year–1 and 40 g m–2 year–1), and two soil moisture levels (– 0.5 and – 1.5 MPa) in open top chambers. After 20 months of exposure, needles were collected and ergastic substances including starch grains and polyphenols were assessed using light microscopy, and calcium oxalate crystals were assessed using light microscopy, scanning electron microscopy, and transmission electron microscopy. Polyphenol content was also determined using the Folin-Denis assay and condensed tannins were estimated by precipitation with protein. Evaluation of phenolic content histochemically was compared to results obtained using the Folin-Denis assay. Total leaf polyphenol and condensed tannin content were increased by main effects of elevated CO2, low soil N and well-watered conditions. Elevated CO2 and low soil N decreased crystal deposition within needle phloem. Elevated CO2 had no effect on the percentage of cells within the mesophyll, endodermis, or transfusion tissue which contained visible starch inclusions. With respect to starch accumulation in response to N stress, mesophyll > endodermis > transfusion tissue. The opposite was true in the case of starch accumulation in response to main effects of water stress: mesophyll < endodermis < transfusion tissue. These results indicate that N and water conditions significantly affect deposition of leaf ergastic substances in longleaf pine, and that normal variability in leaf tissue quality resulting from gradients in soil resources will be magnified under conditions of elevated CO2. Received: 5 November 1996 / Accepted: 7 March 1997  相似文献   

19.
Eastern white pine (Pinus strobus L.) shoots from mature trees were collected from two sites of contrasting soil pH: the Glendon campus of York University in Toronto, Ontario (pH 6.7 at 40 cm); and Muskoka near Huntsville, Ontario (pH 4.2 at 40 cm). Needles of ages 1-3 years were removed from the shoots, and the percentage of ash and silica was determined for all ages. Other needles were frozen in liquid nitrogen and kept in a cryo-biological storage system before x-ray microanalysis. Percentages of ash and silica were higher in the needles from Muskoka. Ash and silica increased with needle age for trees from the Muskoka site, but less so at the Toronto site. Of the 13 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Cu and Zn) detected by microanalysis, Mn, Fe, Cu and Zn were detected in small amounts in the epidermis, endodermis and transfusion tissue (the layer of tracheids and parenchyma immediately surrounding the vascular bundles), and K, P, S and Cl were almost ubiquitous in distribution. Sodium was occasionally detected in the transfusion tissue, and magnesium was concentrated in the endodermal cells. The epidermal walls, transfusion tissue and endodermis were major sites of calcium localization. Silicon was concentrated in the extreme tips of the needles in all tissues, but particularly in the transfusion tissue, and more so in the Muskoka samples. Microanalysis revealed a higher Al content in the Muskoka needles, that Al was concentrated in the needle tips and that the transfusion tissues were major sites of accumulation.  相似文献   

20.
Phylogeographic inference can be a powerful tool in reconstructing species’ evolutionary histories; however, although inferred phylogeographic patterns should depend in part on the underlying types and rates of mutations, the effects of different types of mutations have seldom been quantified. In this study we identified two chloroplast minisatellites in the common reed Phragmites australis, and showed that these are more variable than chloroplast microsatellites. We then recreated parsimony networks of the global phylogeography of P. australis based on data that either included or excluded repetitive sequences (minisatellites and microsatellites), thereby illustrating the influence that these repetitive sequences can have on large‐scale phylogeographic inference. The resulting networks differed in the numbers of mutational steps, degrees of uncertainty, and total numbers of haplotypes. In addition, the suggested ancestor‐descendant relationships among lineages changed substantially depending on whether repetitive sequences were included. We therefore caution against the inclusion of repetitive sequences in large‐scale networks because of their high potential for homoplasy. Nevertheless, we advocate the inclusion of repetitive sequences in other analyses: specifically, we show that the ratio of mutations in repetitive vs. non‐repetitive regions can provide insight into the relative ages of lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号