首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein–protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID–NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35–NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.  相似文献   

4.
Abstract In recent months, there has been a wealth of promising clinical data suggesting that a more effective treatment regimen, and potentially a cure, for hepatitis C virus (HCV) infection is close at hand. Leading this push are direct-acting antivirals (DAAs), currently comprising inhibitors that target the HCV protease NS3, the viral polymerase NS5B, and the non-structural protein NS5A. In combination with one another, along with the traditional standard-of-care ribavirin and PEGylated-IFNα, these compounds have proven to afford tremendous efficacy to treatment-naíve patients, as well as to prior non-responders. Nevertheless, by targeting viral components, the possibility of selecting for breakthrough and treatment-resistant virus strains remains a concern. Host-targeting antivirals are a distinct class of anti-HCV compounds that is emerging as a complementary set of tools to combat the disease. Cyclophilin (Cyp) inhibitors are one such group in this category. In contrast to DAAs, Cyp inhibitors target a host protein, CypA, and have also demonstrated remarkable antiviral efficiency in clinical trials, without the generation of viral escape mutants. This review serves to summarize the current literature on Cyps and their relation to the HCV viral life cycle, as well as other viruses.  相似文献   

5.
Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to other pathogens.  相似文献   

6.
Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75. They developed a luminescent proximity assay (AlphaScreen) designed to measure the association of the 80-amino-acid integrase binding domain of LEDGF/p75 with the 163-amino-acid catalytic core domain of HIV IN. This assay proved to be quite robust (with a Z' factor of 0.84 in screening libraries arrayed as orthogonal mixtures) and successfully identified several compounds specific for this protein-protein interaction.  相似文献   

7.
8.
9.
Nonstructural (NS) protein 3 is a DEXH/D-box motor protein that is an essential component of the hepatitis C viral (HCV) replicative complex. The full-length NS3 protein contains two functional modules, both of which are essential in the life cycle of HCV: a serine protease domain at the N terminus and an ATPase/helicase domain (NS3hel) at the C terminus. Truncated NS3hel constructs have been studied extensively; the ATPase, nucleic acid binding, and helicase activities have been examined and NS3hel has been used as a target in the development of antivirals. However, a comprehensive comparison of NS3 and NS3hel activities has not been performed, so it remains unclear whether the protease domain plays a vital role in NS3 helicase function. Given that many DEXH/D-box proteins are activated upon interaction with cofactor proteins, it is important to establish if the protease domain acts as the cofactor for stimulating NS3 helicase function. Here we show that the protease domain greatly enhances both the direct and functional binding of RNA to NS3. Whereas electrostatics plays an important role in this process, there is a specific allosteric contribution from the interaction interface between NS3hel and the protease domain. Most importantly, we establish that the protease domain is required for RNA unwinding by NS3. Our results suggest that, in addition to its role in cleavage of host and viral proteins, the NS3 protease domain is essential for the process of viral RNA replication and, given its electrostatic contribution to RNA binding, it may also assist in packaging of the viral RNA.  相似文献   

10.

Background

Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in South and South-East Asia. Lack of antivirals and non-availability of affordable vaccines in these endemic areas are a major setback in combating JEV and other closely related viruses such as West Nile virus and dengue virus. Protein secondary structure mimetics are excellent candidates for inhibiting the protein-protein interactions and therefore serve as an attractive tool in drug development. We synthesized derivatives containing the backbone of naturally occurring lupin alkaloid, sparteine, which act as protein secondary structure mimetics and show that these compounds exhibit antiviral properties.

Methodology/Principal Findings

In this study we have identified 3,7-diazabicyclo[3.3.1]nonane, commonly called bispidine, as a privileged scaffold to synthesize effective antiviral agents. We have synthesized derivatives of bispidine conjugated with amino acids and found that hydrophobic amino acid residues showed antiviral properties against JEV. We identified a tryptophan derivative, Bisp-W, which at 5 µM concentration inhibited JEV infection in neuroblastoma cells by more than 100-fold. Viral inhibition was at a stage post-entry and prior to viral protein translation possibly at viral RNA replication. We show that similar concentration of Bisp-W was capable of inhibiting viral infection of two other encephalitic viruses namely, West Nile virus and Chandipura virus.

Conclusions/Significance

We have demonstrated that the amino-acid conjugates of 3,7-diazabicyclo[3.3.1]nonane can serve as a molecular scaffold for development of potent antivirals against encephalitic viruses. Our findings will provide a novel platform to develop effective inhibitors of JEV and perhaps other RNA viruses causing encephalitis.  相似文献   

11.
The study of viral pathogens with genomes as large and complex as poxviruses represents a constant experimental challenge. Advances in recombinant DNA technologies have provided sophisticated methods to produce mutants defective in one or more viral genes, termed knockout (KO) viruses, thereby facilitating research into the impact of specific gene products on viral pathogenesis. Such strategies have rapidly advanced the systematic mining of many poxvirus genomes and enabled researchers to identify and characterize poxvirus genes whose functions represent the culmination of host and pathogen coevolution. Of particular interest are the multiple classes of virus-encoded immunomodulatory proteins that have evolved specifically to allow poxviruses to evade, obstruct or subvert critical elements within the host innate and acquired immune responses. Functional characterization of these viral genes by generating KO viruses and investigating the phenotypic changes that result is an important tool for understanding the molecular mechanisms underlying poxvirus replication and pathogenesis. Moreover, the insights gained have led to new developments in basic and clinical virology, provided a basis for the design of new vaccines and antivirals, and increased the potential application of poxviruses as investigative tools and sources of biotherapeutics for the treatment of human diseases.  相似文献   

12.
There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.  相似文献   

13.
Influenza is a continuing world-wide public health problem that causes significant morbidity and mortality during seasonal epidemics and sporadic pandemics. The existing vaccination program is variably effective from year to year, and drug resistance to available antivirals is a growing problem, making the development of additional antivirals an important challenge. Influenza virus non-structural protein 1 (NS1) is the centerpiece of the viral response to the host interferon (IFN) system. NS1 was demonstrated previously to be a potential therapeutic target for antiviral therapy by the identification of specific small-molecule inhibitors. One inhibitory compound, NSC125044, was subjected to chemical evaluation. Initial synthetic work comprised simplifying the core structure by removing unwanted functionality and determination of key features important for activity. Several subclasses of molecules were designed and synthesized to further probe activity and develop the basis for a structure-activity relationship. Apparent potency, as judged by activity in virus replication assays, increased dramatically for some analogs, without cytotoxicity. Results suggest that the target binding site tolerates hydrophobic bulk as well as having a preference for weakly basic substituents.  相似文献   

14.
Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance.Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target – the RNA-dependent RNA polymerase – the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.  相似文献   

15.
Astrahan P  Kass I  Cooper MA  Arkin IT 《Proteins》2004,55(2):251-257
Effective antivirals are few and far between, and as such, the appearance of resistance toward such treatments is an obvious medical concern. In this article, we analyze the mechanism by which influenza attains resistance toward amantadine, a blocker of the viral M2 H(+) channel. Binding analyses of amantadine to M2 peptides from different viral strains showed that the virus has developed two alternate routes to avoid blockage of its channel: (1) a conventional route, in which the channel no longer binds the blocker and, hence, the blocker cannot exert its inhibitory function; and (2) a novel mechanism, in which binding of the blocker is retained, yet the function of the protein is unaffected. Pore diameter profiles revealed the molecular mechanism by which the virus may attain this novel type of resistance: an increase in the size of the channel. Thus, despite the drug binding the channel, it may not be able to block the pore, since the channel diameter has increased. Our findings may have broad ramifications in the design of new antivirals, and of novel blockers against malfunctioning human channels implicated in disease.  相似文献   

16.
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.  相似文献   

17.
There are no effective antivirals currently available for the treatment of flavivirus infection in humans. As such, the identification and characterization of novel drug target sites are critical to developing new classes of antiviral drugs. The flavivirus NS5 N-terminal capping enzyme (CE) is vital for the formation of the viral RNA cap structure, which directs viral polyprotein translation and stabilizes the 5' end of the viral genome. The structure of the flavivirus CE has been solved, and a detailed understanding of the CE-guanosine triphosphate (GTP) and CE-RNA cap interactions is available. Because of the essential nature of the interaction for viral replication, disrupting CE-GTP binding is an attractive approach for drug development. The authors have previously developed a robust assay for monitoring CE-GTP binding in real time. They adapted this assay for high-throughput screening and performed a pilot screen of 46 323 commercially available compounds. A number of small-molecule inhibitors capable of displacing a fluorescently labeled GTP in vitro were identified, and a second functional assay was developed to identify false positives. The results presented indicate that the flavivirus CE cap-binding site is a valuable new target site for antiviral drug discovery and should be further exploited for broad-spectrum anti-flaviviral drug development.  相似文献   

18.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

19.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

20.
Human rhinoviruses (HRVs) are the predominant cause of the common cold. The frequency of HRV infections in industrial countries and the lack of effective therapeutical treatment underline the importance of research for new antiviral substances. As viral infections are often accompanied by the generation of oxidative stress inside the infected cells, several redox-active substances were tested as potential antivirals. In the course of these studies it was discovered that pyrrolidine dithiocarbamate (PDTC) is an extremely potent compound against HRV and poliovirus infection in cell culture. Besides the ability to dramatically reduce HRV production by interfering with viral protein expression, PDTC promotes cell survival and abolishes cytopathic effects in infected cells. PDTC also protects cells against poliovirus infection. These effects were highly specific, as several other antioxidants (vitamin C, Trolox, 2-mercaptoethanol, and N-acetyl-L-cysteine) are inactive against HRV infection. Synthesis of HRV proteins and cleavage of eucaryotic initiation factor 4G responsible for host cell shutoff of cellular protein synthesis are severely inhibited in the presence of PDTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号