首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake kinetics of zinc (Zn), an essential nutrient for both photosynthesis and calcification, in the tissue of S. pistillata showed that the transport of Zn is composed of a linear component (diffusion) at high concentrations and an active carrier-mediated component at low concentrations. The carrier affinity (K m=28 pmol l−1) was very low, indicating a good adaptation of the corals to low levels of Zn in seawater. Zn accumulation in the skeleton was linear; its level was dependent on the length of the incubation as well as on the external concentration of dissolved Zn. There was also a light-stimulation of Zn uptake, suggesting that zooxanthellae, through photosynthesis, are involved in this process. An enrichment of the incubation medium with 10 nM Zn significantly increased the photosynthetic efficiency of S. pistillata. This result suggests that corals living in oligotrophic waters might be limited in essential metals, such as zinc.  相似文献   

2.
Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.  相似文献   

3.
4.
Skeletogenesis in the hermatypic coral Stylophora pistillata was studied by using the lateral skeleton preparative (LSP) assay, viz., a coral nubbin attached to a glass coverslip glued to the bottom of a Petri dish. Observations on tissue and skeletal growth were made by polarized microscopy and by using vital staining. The horizontal distal tissue edges developed thin transparent extensions of ectodermal and calicoblastic layers only. Four stages (I-IV) of skeletogenesis were observed at these edges, underneath the newly developed tissue. In stage I, a thin clear layer of coral tissue advanced 3–40 μm beyond the existing LSP peripheral zone, revealing no sign of spiculae deposition. At stage II, primary fusiform crystals (1 μm each) were deposited, forming a primary discontinuous skeletal front 5–30 μm away from the previously deposited skeleton. During stage III, needle-like crystals appeared, covering the primary fusiform crystals. Stage IV involved further lengthening of the needle-like crystals, a process that resulted in occlusion of the spaces between adjacent crystals. Calcification stages I-III developed within hours, whereas stage IV was completed in several days to weeks. Two basic skeletal structures, “scattered” and “laminar” skeletons, were formed, integrating the growth patterns of the needle-like crystals. High variation was recorded in the expression of the four calcification stages, either between different locations along a single LSP or between different preparations observed at the same diurnal time. All four skeletogenesis stages took place during both day and night periods, indicating that an intrinsic process controls S. pistillata calcification. This study was supported by the Israel Science Foundation (206/01 to J.E.), by the BARD, US-Israel Bi-National Agricultural Research and Development, by INCO-DEV project (REEFRES), and by CORALZOO, EC Collective Research project.  相似文献   

5.
The catalytic activity and the inhibition of a new coral carbonic anhydrase (CA, EC 4.2.1.1), from the scleractinian coral Stylophora pistillata, STPCA-2, has been investigated. STPCA-2 has high catalytic activity for the physiological reaction being less sensitive to anion and sulfonamide inhibitors compared to STPCA, a coral enzyme previously described. The best STPCA-2 anion inhibitors were sulfamide, sulfamic acid, phenylboronic acid, and phenylarsonic acid (KIs of 5.7-67.2 μM) whereas the best sulfonamide inhibitors were acetazolamide and dichlorophenamide (KIs of 74-79 nM). Because this discriminatory effect between these two coral CAs, sulfonamides may be useful to better understand the physiological role of STPCA and STPCA-2 in corals and biomineralization processes.  相似文献   

6.
High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6.  相似文献   

7.
Zinc (Zn) is an essential element for corals. We investigated the effects of ocean acidification on zinc incorporation, photosynthesis, and gross calcification in the scleractinian coral Stylophora pistillata. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) for 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates. After 5 weeks, corals raised at pHT (8.1) exhibited higher 65Zn activity in the coral tissue and skeleton, compared with corals raised at a lower pH. Photosynthesis, photosynthetic efficiency, and gross calcification, measured by 45Ca incorporation, were however unchanged even at the lowest pH.  相似文献   

8.
Carbonic anhydrases (CA) play an important role in biomineralization from invertebrates to vertebrates. Previous experiments have investigated the role of CA in coral calcification, mainly by pharmacological approaches. This study reports the molecular cloning, sequencing, and immunolocalization of a CA isolated from the scleractinian coral Stylophora pistillata, named STPCA. Results show that STPCA is a secreted form of alpha-CA, which possesses a CA catalytic function, similar to the secreted human CAVI. We localized this enzyme at the calicoblastic ectoderm level, which is responsible for the precipitation of the skeleton. This localization supports the role of STPCA in the calcification process. In symbiotic scleractinian corals, calcification is stimulated by light, a phenomenon called "light-enhanced calcification" (LEC). The mechanism by which symbiont photosynthesis stimulates calcification is still enigmatic. We tested the hypothesis that coral genes are differentially expressed under light and dark conditions. By real-time PCR, we investigated the differential expression of STPCA to determine its role in the LEC phenomenon. Results show that the STPCA gene is expressed 2-fold more during the dark than the light. We suggest that in the dark, up-regulation of the STPCA gene represents a mechanism to cope with night acidosis.  相似文献   

9.
Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m?2 s?1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 ?-enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral–dinoflagellate symbioses depend critically on environmental conditions.  相似文献   

10.
The effect of convection on reaction-diffusion instabilities in a visco-elastic medium is studied by using the standard continuum theory of a fluid mixture. The medium is assumed to be in local mechanical equilibrium, and convection is generated by pressure forces which arise if the equilibrium density of the medium changes with its composition. A linear stability analysis shows that reaction-diffusion instabilities proceeding from homogeneous steady states at rest are unmodified by induced convection to first order in concentration changes. We suggest that a non-linear analysis would show convection produces no new instabilities, as a linear analysis of inhomogeneous non-convecting stationary states shows that reaction-diffusion growth rates are reduced by convection at long wavelengths and are otherwise unchanged. For applications in embryology, numerical estimates suggest that convection can be ignored in reaction-diffusion mechanisms for pattern formation, and this conclusion is supported by a dimensional analysis.On leave from Department of Physics, Monash University, Clayton, Victoria 3168, Australia  相似文献   

11.
Short-term experiments were used to isolate the detrimental effects of grazer disturbance on young corals, and determine the stage of development at which recruits are no longer susceptible to this disturbance. Artificial substrata containing an algal matrix and coral recruits of different life stages were exposed to grazing by epilithic algal matrix (EAM) feeding combtoothed blennies, Salarias fasciatus. Single polyp recruits were vulnerable to grazer disturbance, while multi-polyp recruits (ca. 6–8 polyps) survived with evidence of minor damage in the form of tissue and polyp loss. The result indicates that blennies, although small and possessing weak dentition, can negatively influence the survival of young coral recruits. The protruding structure of micro-nubbins, representing juvenile corals were not damaged, suggesting that coral achieving that size and form can escape such damage. Communicated by Ecology Editor Prof. Peter Mumby  相似文献   

12.
Summary A number of parameters characteristic of the wing margin precursor in imaginal discs of Drosophila are known: the zone of non-proliferating cells or ZNC (O'Brochta and Bryant 1985), aldehyde oxidase (AO) and other enzyme staining patterns (Sprey et al. 1982), E1C antigen localization in a narrow band along the margin (Piovant and Lena 1988). To test our hypothesis that such parameters, and others, act in concert to determine margin identity and the positional information that specifies the bristles and hairs appropriate to the anterior, posterior and distal margins, we have examined these parameters in the dominant mutant Lyra, in which much of the anterior and posterior margins is missing. After establishing that Lyra phenotype is already evident in the early pupal wing, we tested the known imaginal disc parameters and found that only Mab E1C (Piovant and Lena 1988) distribution differs from wild type, suggesting that E1C antigen may be a component of positional information. Sibatani's (1983) model for specification of positional information (PI) applied to wing discs predicts the Lyra adult wing shape as well as the reduced distribution of E1C antigen in Lyra wing discs. The model is based on the assumption that specification of positional information depends on interactions of multiple, independent factors. Clonal analysis with shaggy (Simpson et al. 1988 and Ripoll et al. 1988) indicates that factors in addition to E1C antigen contribute to margin PI in Lyra wings and should allow us to test the multi-component hypothesis further.  相似文献   

13.
Geographic information system-based analysis was used to derive comprehensive, consistent estimates of the potential area of broadly defined, shallow-water, tropical and subtropical coral ecosystems within the territorial sea and exclusive economic zone of the United States. A coral ecosystem is composed of habitats including unconsolidated sediment, mangrove, hermatypic coral, colonized hardbottom, and submerged vegetation, and major structural zones like reef crest, lagoon, and fore reef. This broad definition reflects the importance of both reef and non-reef habitats and structural zones in the function of these ecosystems. Nautical charts, published by the National Oceanic and Atmospheric Administration’s Office of the Coast Survey, provide a consistent source of 10-fathom (∼18 m) and 100-fathom (∼183 m) depth curve information. The 10-fathom or 100-fathom depth curves are used as surrogates for the potential distribution and extent of shallow-water coral ecosystems in tropical and subtropical U.S. waters. An estimated 36,813 sq·km area has been identified where coral ecosystems can potentially be found in waters less than 10 fathoms (18 m) deep. In addition, an estimated 143,059 sq·km area has been identified where coral ecosystems potentially can be found in U.S. waters at depths down to 100 fathoms (183 m). Results also indicate that previous studies underestimated the extent of potential coral ecosystems for some locations in U.S. tropical and subtropical waters by as much as 100% and that the regional distribution of coral ecosystems has been incorrectly reported.  相似文献   

14.
Summary A molecular marker has been identified in embryos of the cockroach, Periplaneta americana, that is localized among epithelial cells to those directly involved in morphogenesis. A monoclonal antibody has been developed that selectively binds to epithelial cells undergoing any of three very different morphogenetic movements-invagination, evagination or epiboly. Neighboring cells not involved in these developmental processes are not labeled by the antibody. The antigen is transiently present on the cells for a period just prior to and during the morphogenetic activity. It is localized on the apical surface of the cells. The spatial, temporal and subcellular distributions of antibody binding during development indicate a role for the antigen in epithelial morphogenesis different from that of any previously described molecule.  相似文献   

15.
A system for modelling cell-cell interactions during plant morphogenesis   总被引:2,自引:0,他引:2  
  相似文献   

16.
A coral fluorescent protein from Trachyphyllia geoffroyi, Kaede, possesses a tripeptide of His62-Tyr63-Gly64, which forms a chromophore with green fluorescence. This chromophore's fluorescence turns red following UV light irradiation. We have previously shown that such photoconversion is achieved by a formal beta-elimination reaction, which results in a cleavage of the peptide bond found between the amide nitrogen and the alpha-carbon at His62. However, the stereochemical arrangement of the chromophore and the precise structural basis for this reaction mechanism previously remained unknown. Here, we report the crystal structures of the green and red form of Kaede at 1.4 A and 1.6 A resolutions, respectively. Our structures depict the cleaved peptide bond in the red form. The chromophore conformations both in the green and red forms are similar, except a well-defined water molecule in the proximity of the His62 imidazole ring in the green form. We propose a molecular mechanism for green-to-red photoconversion, which is assisted by the water molecule.  相似文献   

17.
The ‘gardening concept’ for reef restoration focuses on coral colonies farming in mid-water nurseries before their transplantation onto denuded reef areas. Nurseries situated in a nutrient-enriched environment significantly curtail nursery time, but extend labor, as nursery construction and farmed corals must be frequently cleaned from competing fouling organisms. Mass farming of corals calls, therefore, for efficient and cheap maintenance methodologies, which we here tested by employing Aqua-guard M250, an anti-fouling agent used in the fish farming industry. We found that this anti-fouling paint, while reducing fouling organisms on nursery components during the crucial phase of coral ramets' development from nubbins and small fragments sizes to colony sizes suitable for transplantation, is not toxic to maricultured coral fragments that staged more than 2 cm away from the paint. Applying small quantities of such antifouling paint to coral nurseries, while restricting its use to nursery components that are not in direct contact with farmed coral material, reduces fouling coverage and cleaning procedures by 90%.  相似文献   

18.
Pietak AM 《Bio Systems》2012,109(3):367-380
How a homogeneous collective of cells consistently and precisely establishes long-range tissue patterns remains a question of active research. This work explores the hypothesis of plant organs as resonators for electromagnetic radiation. Long-range structural patterns in the developing ovaries and male flower buds of cucurbit plants (zucchini, acorn, and butternut squash), in addition to mature cucurbit fruits (acorn, butternut, and zucchini squash; watermelon, and cucumber), were investigated. A finite element analysis (FEA) model was used to determine resonant EM modes for models with similar geometric and electrical parameters to those of developing organs. Main features of the developing ovaries (i.e. shape of placental lines, ovum location, definition of distinct tissue regions), male flower buds (i.e. early pollen tube features), and mature fruits (i.e. septa placement, seed location, endocarp and mesocarp) showed distinct correlations with electric and magnetic field components of electromagnetic resonant modes. On account of shared pattern signatures in developing organs and the EM resonant modes supported by a modelled structure with similar geometric and electrical properties to those of cucurbit organs, experimental investigations are warranted. The concept of a developing organ as an EM dielectric resonator may extend to a variety of morphogenetic phenomena in a number of living systems.  相似文献   

19.
A 3-dimensional individual-based model, the ReefModel, was developed to simulate the dynamical structure of coral reef community using object-oriented techniques. Interactions among functional groups of reef organisms were simulated in the model. The behaviours of these organisms were described with simple mechanistic rules that were derived from their general behaviours (e.g. growing habits, competitive mechanisms, response to physical disturbance) observed in natural coral reef communities. The model was implemented to explore the effects of physical disturbance on the dynamical structure of a 3-coral community that was characterized with three functional coral groups: tabular coral, foliaceous coral and massive coral. Simulation results suggest that (i) the integration of physical disturbance and differential responses (disturbance sensitivity and growing habit) of corals plays an important role in structuring coral communities; (ii) diversity of coral communities can be maximal under intermediate level of acute physical disturbance; (iii) multimodality exists in the final states and dynamic regimes of individual coral group as well as coral community structure, which results from the influence of small random spatial events occurring during the interactions among the corals in the community, under acute and repeated physical disturbances. These results suggest that alternative stable states and catastrophic regime shifts may exist in a coral community under unstable physical environment.  相似文献   

20.
Phase shifts and the role of herbivory in the resilience of coral reefs   总被引:1,自引:4,他引:1  
Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号