首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In recent experiments by Richardson et al. (2010) [Richardson, T.O., Robinson, E.J.H., Christensen, K., Jensen, H.J., Franks, N.R., Sendova-Franks, A.B., 2010. PLoS ONE 5, e9621.] ant motion out of the nest is shown to be a non-stationary process intriguingly similar to the dynamics encountered in physical aging of glassy systems. Specifically, exit events can be described as a Poisson process in logarithmic time, or, for short, a log-Poisson process. Nouvellet et al. (2010) [Nouvellet, P., Bacon, J.P.,Waxman, D., 2010. J. Theor. Biol. 266, 573.] criticized these conclusions and performed new experiments where the exit process could more simply be described by standard Poisson statistics. In their reply Richardson et al. (2011b) [Richardson, T.O., Robinson, E.J.H., Christensen, K., Jensen, J.H., Christensen, K., Jensen, H.J., Franks, N.R., Sendova-Franks, A.B., 2011b. J. Theor. Biol. 269, 356-358.] stressed that the two sets of experiments were performed under very different conditions and claimed that this was the likely source of the discrepancy. Ignoring any technical issues which are part of the above discussion, the focal point of this work is to ascertain whether or not both log-Poisson and Poisson statistics are possible in an ant society under different external conditions. To this end, a model is introduced where interacting ants move in a stochastic fashion from one site to a neighboring site on a finite 2D lattice. The probability of each move is determined by the ensuing changes of a utility function which is a sum of pairwise interactions between ants, weighted by distance. Depending on how the interactions are defined and on a control parameter dubbed ‘degree of stochasticity’ (DS), the dynamics either quickly converges to a stationary state, where movements are a standard Poisson process, or may enter a non-stationary regime, where exits can be described as suggested by Richardson et al. Other aspects of the model behavior are also discussed, i.e. the time dependence of the average value of the utility function, and the statistics of spatial re-arrangements happening anywhere in the system. Finally, we discuss the role of record events and their statistics in the context of ant societies and suggest the possibility that a transition from non-stationary to stationary dynamics can be triggered experimentally.  相似文献   

2.
Several recent reports (Mayshar et?al., 2010; Laurent et?al., 2011; Lister et?al., 2011; Gore et?al., 2011; Hussein et?al., 2011) uncover genetic and epigenetic alterations in induced pluripotent stem cells, stimulating debate about their future. However, will these important findings really impact what we hope to gain?  相似文献   

3.
<正>Dear Editor,Cumulative evidence supports the role of early-life viral infections,especially respiratory syncytial virus(RSV)and human rhinovirus(HRV),as major antecedents of childhood asthma(Lemanske,2002;Jackson et al.,2008).In this study,the x TAG respiratory viral panel FAST(RVP FAST)assay,a multiplex polymerase chain reaction(PCR)-based method(Arens et al.,2010;BaladaLlasat et al.,2011;Gharabaghi et al.,2011;Selvaraju,2012),was used to investigate the association of infec-  相似文献   

4.
Development of specific ligands for protein targets that help decode the complexities of protein–protein interaction networks is a key goal for the field of chemical biology. Despite the emergence of powerful in silico and experimental high-throughput screening strategies, the discovery of synthetic ligands that selectively modulate protein–protein interactions remains a challenge for the chemical biologists. Proteins often utilize small folded domains for recognition of other biomolecules. The basic hypothesis guiding our research is that by mimicking these domains, we can modulate the function of a particular protein with metabolically-stable synthetic molecules (Raj et al., 2013). This presentation will discuss computational approaches (Bullock et al., 2011; Jochim & Arora, 2010) to identify targetable interfaces along with synthetic methods (Patgiri et al., 2008; Tosovska & Arora, 2010) to develop protein domain mimics (PDMs) as modulators of intracellular protein–protein interactions (Henchey et al., 2010; Patgiri et al., 2011).  相似文献   

5.
6.
In their technical comment Salesa et al. (2011) raise several issues, including an important topic affecting most, or perhaps all, paleoecological studies—the difficulty of determining a reasonable way to deal with taxonomy. Specifically, Salesa et al. draw our attention to a taxonomic revision of Iberian Anchitherium ( Sánchez et al. 1998 ), that we failed to follow in our study ( Eronen et al. 2010 ), and express concerns that a different handling of Anchitherium taxonomy would have affected our results and conclusions.  相似文献   

7.
Mutations that eliminate chloroplast translation in Arabidopsis (Arabidopsis thaliana) result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on spectinomycin, an inhibitor of chloroplast translation, and crossed the most tolerant accessions with embryo-defective mutants disrupted in chloroplast ribosomal proteins generated in a sensitive background. The results indicate that tolerance is mediated by ACC2, a duplicated nuclear gene that targets homomeric acetyl-coenzyme A carboxylase to plastids, where the multidomain protein can participate in fatty acid biosynthesis. In the presence of functional ACC2, tolerance is enhanced by a second locus that maps to chromosome 5 and heightened by additional genetic modifiers present in the most tolerant accessions. Notably, some of the most sensitive accessions contain nonsense mutations in ACC2, including the “Nossen” line used to generate several of the mutants studied here. Functional ACC2 protein is therefore not required for survival in natural environments, where heteromeric acetyl-coenzyme A carboxylase encoded in part by the chloroplast genome can function instead. This work highlights an interesting example of a tandem gene duplication in Arabidopsis, helps to explain the range of embryo phenotypes found in Arabidopsis mutants disrupted in essential chloroplast functions, addresses the nature of essential proteins encoded by the chloroplast genome, and underscores the value of using natural variation to study the relationship between chloroplast translation, plant metabolism, protein import, and plant development.Embryo development in Arabidopsis (Arabidopsis thaliana) requires the coordinated expression of a large number of essential genes (Muralla et al., 2011). Recessive mutations that disrupt these nuclear genes result in an embryo-defective (emb) mutant phenotype (Meinke, 2013). Many EMB genes of Arabidopsis encode chloroplast-localized proteins involved in basic metabolism, protein import, and chloroplast gene expression (Hsu et al., 2010; Bryant et al., 2011; Savage et al., 2013). Functional plastids are therefore required for embryo development in Arabidopsis. Mutations that disrupt photosynthesis alone interfere with embryo and seedling pigmentation, not embryo development. Multiple examples of EMB genes that encode chloroplast-localized aminoacyl-tRNA synthetases, RNA-binding proteins, translation factors, and ribosomal proteins have been described in the literature (Berg et al., 2005; Bryant et al., 2011; Muralla et al., 2011; Romani et al., 2012; Tiller and Bock, 2014). Translation of some chloroplast-encoded mRNAs is therefore essential for seed development. This raises a basic question: which chloroplast genes are required? In this report, we used natural variation and genetic analysis to evaluate the model (Bryant et al., 2011) that a single chloroplast gene, acetyl-coenzyme A carboxylase D (accD), needed for the initial stages of fatty acid biosynthesis, underlies the requirement for chloroplast translation during heterotrophic growth and embryo development in Arabidopsis.Targeted gene disruptions in tobacco (Nicotiana tabacum) have identified four chloroplast genes with essential functions that extend beyond photosynthesis: accD, caseinolytic protease P1 (clpP1), hypothetical chloroplast open reading frame1 (ycf1), and ycf2 (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005). Comparative genomics have shown that all four genes are retained in the plastid genomes of most angiosperms, including chlorophyll-deficient, parasitic species (dePamphilis and Palmer, 1990; Funk et al., 2007; Jansen et al., 2007). Several examples of essential chloroplast genes that relocated to the nucleus have also been described (Magee et al., 2010; Rousseau-Gueutin et al., 2013). The absence of ycf1 and ycf2 in grasses (Jansen et al., 2007) and the replacement of accD with a nuclear gene that targets functional protein back to the chloroplast (Konishi and Sasaki, 1994; Chalupska et al., 2008) remain to be explained.The accD gene in Arabidopsis (AtCg00500) encodes one subunit of the chloroplast-localized heteromeric acetyl-coenzyme A carboxylase (ACCase), an essential enzyme in fatty acid biosynthesis that converts acetyl-CoA to malonyl-CoA. Three other subunits are encoded by nuclear genes, one of which is also known to be required for embryo development (Li et al., 2011). Disruptions of three additional genes (At3g25860, At1g34430, and At2g30200) associated with the reactions that precede and follow the step catalyzed by heteromeric ACCase also result in embryo lethality (Lin et al., 2003; Bryant et al., 2011; Muralla et al., 2011). Embryo lethality is also encountered in auxotrophic mutants unable to produce biotin, an essential vitamin required for ACCase function (Schneider et al., 1989; Patton et al., 1998; Muralla et al., 2008). The conversion of acetyl-CoA to malonyl-CoA during fatty acid biosynthesis within the plastid is therefore required for embryo development in Arabidopsis.In addition to the chloroplast-localized, heteromeric ACCase found in most angiosperms, there is also a cytosolic, homomeric ACCase involved in later stages of fatty acid biosynthesis. In both Arabidopsis and Brassica napus, the gene that encodes this homomeric enzyme is duplicated (Yanai et al., 1995; Schulte et al., 1997). One copy (ACC1; At1g36160) encodes an essential protein localized to the cytosol. Disruption of this gene in Arabidopsis (EMB22, GURKE, and PASTICCINO3 [PAS3]) results in an embryo-defective phenotype distinct from that seen following a loss of chloroplast translation (Meinke, 1985; Baud et al., 2004). Weak alleles exhibit cold sensitivity and glossy inflorescence stems resulting from changes in cuticular wax composition (Lü et al., 2011; Amid et al., 2012). The adjacent copy (ACC2; At1g36180) is expressed at low levels and is predicted to encode a chloroplast-localized protein (Yanai et al., 1995; Baud et al., 2003; Babiychuk et al., 2011). Knockouts of this gene exhibit no obvious phenotype under normal growth conditions (Babiychuk et al., 2011).In Brassica spp., plants with albino leaves devoid of chloroplast ribosomes have been produced by germinating seeds on spectinomycin, an inhibitor of chloroplast translation, and then transplanting the young seedlings to basal medium (Zubko and Day, 1998). This experimental approach was initially described as a promising system for generating stable albinism without mutagenesis. However, different results were obtained with tobacco and Arabidopsis seedlings, which were much more sensitive to spectinomycin. In light of this reported variation in seedling responses to spectinomycin and the known duplication of ACC1 in the Brassicaceae, we decided to explore whether natural accessions of Arabidopsis differed in their ability to tolerate a loss of chloroplast translation and whether genetic analysis in Arabidopsis could uncover some of the genes involved. The results described here confirm the value of this approach, provide insights into the phenotypes of mutants defective in essential chloroplast functions, and help to explain the requirement of chloroplast translation for plant growth and development.  相似文献   

8.
Lake Sentiz and Lake Chozas are two small water bodies in the Province of León (NW Spain). The former is mesotrophic and the latter went from oligotrophic to turbid in 1997, due to introduction of an invasive allochthonous crayfish Procambarus clarkii (Rodríguez et al., 2003, Rodríguez et al., 2005, Marchi et al., 2011a, Marchi et al., 2011b). We set out to study health status of the two ecosystems by the joint use of different but correlated ecological indicators, supplementing the values obtained by monitoring campaigns. We examine three scenarios: (1) Lake Sentiz, (2) Lake Chozas before and (3) Lake Chozas after the biological invasion. We evaluate eco-exergy, emergy and eco-exergy–empower ratio, three holistic ecological indicators based on the thermodynamics of far-from-equilibrium systems. When structural changes take place in ecosystems it is recommended to apply holistic thermodynamic indicators as presented in Jørgensen et al., 2010a, Jørgensen et al., 2010b. We propose their joint application for a complete overview of the monetary value of natural capital, because they provide information added to statistical analysis and direct measurement. The aim is to determine which of these indicators best represents the effects of eutrophication and perturbations caused by alien species in the two freshwater systems. The eco-exergy–empower ratio gives the best results, since it clearly indicates lake efficiency in transforming direct and indirect solar energy inputs into organization. The eco-exergy (work capacity) results are used to estimate ecosystem services and quantify the economic value of lake natural capital. Calculation of ecosystem services on an eco-exergy basis provides good indications of monetary gains or losses possible in perturbed systems, including eutrophic or invaded ecosystems. This is not surprising, because work capacities include all possible services offered by ecosystems, not only the services actually used by humans. Eco-exergy and the eco-exergy–empower ratio can be guidelines for the calculation of ecosystem services, although they give only a partial indication of the environmental costs and benefits of a given level of information. The present results suggest political and economic considerations and solutions, and are a useful example for organisations involved in environmental management of pollution and biological invasions by exotic species.  相似文献   

9.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

10.
Garcia et al. (2011) recently discussed early human dispersals into the Iberian Peninsula, describing several putative lithic artifacts (Martínez et al., 2010) recovered from layer 7 of the Vallpara díssection (Madurell-Malapeira et al., 2010) in Terrassa (Vallès-Penedès Basin, Catalonia, Spain). According to the authors' opinion, such evidence (1) fills a gap in the chronology of early human occupation in Iberia, (2) indicates that these populations had primary and early access to carcasses, and (3) confirms that early human populations were equipped with advanced cultural traits enabling them to survive in unfavourable climatic conditions. We argue below that the record of human activity at Vallparadís (Martínez et al., 2010;Garcia et al., 2011) is doubtful and even that if confirmed, a chronological gap would remain (contra Garcia et al., 2011). Additional remarks on assertions by these authors on the Vallparadís geology, taphonomy and paleonvironment are also provided.  相似文献   

11.
12.
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.  相似文献   

13.
浙江天台盆地晚白垩世恐龙蛋新类型(英文)   总被引:1,自引:0,他引:1  
浙江天台盆地上白垩统赖家组和赤城山组是我国最重要的恐龙蛋化石产出地层之一。近年来,我们对天台盆地陆相红层中的恐龙蛋化石层位进行了详细厘定,对恐龙蛋类型进行了系统描述,并对前人报道的一些属种进行了分类订正。研究显示,天台恐龙蛋化石群基本上可分为7蛋科、12蛋属和15蛋种,代表了我国晚白垩世早期的恐龙蛋化石组合。本文简要报道了主要产自天台盆地赤城山组的双塘似蜂窝蛋(新蛋属、新修订种)、木鱼山半蜂窝蛋(新蛋属、新蛋种)、国清寺副蜂窝蛋(新修订种)、天台棱柱形蛋(新修订种)和张头槽马赛克蛋(新蛋属、新修订种)等3新蛋属、5新蛋种和修订种的主要鉴定特征,并建立一新蛋科——似蜂窝蛋科。  相似文献   

14.
Many neurodegenerative disorders such as Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and others often occur as a result of progressive loss of structure or function of neurons. Recently, many groups were able to generate neural cells, either differentiated from induced pluripotent stem cells (iPSCs) or converted from somatic cells. Advances in converted neural cells have opened a new era to ease applications for modeling diseases and screening drugs. In addition, the converted neural cells also hold the promise for cell replacement therapy (Kikuchi et al., 2011; Krencik et al., 2011; Kriks et al., 2011; Nori et al., 2011; Rhee et al., 2011; Schwartz et al., 2012). Here we will mainly discuss most recent progress on using converted functional neural cells to treat neurological diseases and highlight potential clinical challenges and future perspectives.  相似文献   

15.
Methamphetamine exposure in utero leads to a variety of higher‐order cognitive deficits, such as decreased attention and working, and spatial memory impairments in exposed children (Piper et al., 2011; Roussotte et al., 2011; Kiblawi et al., 2011). As with other teratogens, the timing of methamphetamine exposure greatly determines its effects on both neuroanatomical and behavioral outcomes. Methamphetamine exposure in rodents during the third trimester human equivalent period of brain development results in distinct and long‐lasting route‐based and spatial navigation deficits (Williams et al., 2003; Vorhees et al., 2005, 2008, 2009;). Here, we examine the impact of neonatal methamphetamine‐induced neurotoxicity on behavioral outcomes, neurotransmission, receptor changes, plasticity proteins, and DNA damage. Birth Defects Research (Part C) 108:131–141, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
17.
Phage T4 is among the best-characterized biological systems (S. Kanamaru and F. Arisaka, Seikagaku 74:131-135, 2002; E. S. Miller et al., Microbiol. Mol. Biol. Rev. 67:86-156, 2003; W. B. Wood and H. R. Revel, Bacteriol. Rev. 40:847-868, 1976). To date, several genomes of T4-like bacteriophages are available in public databases but without any APEC bacteriophages (H. Jiang et al., Arch. Virol. 156:1489-1492, 2011; L. Kaliniene, V. Klausa, A. Zajanckauskaite, R. Nivinskas, and L. Truncaite, Arch. Virol. 156:1913-1916, 2011; J. H. Kim et al., Vet. Microbiol. 157:164-171, 2012; W. C. Liao et al., J. Virol. 85:6567-6578, 2011). We isolated a bacteriophage from a duck factory, named HX01, that infects avian pathogenic Escherichia coli (APEC). Sequence and morphological analyses revealed that phage HX01 is a T4-like bacteriophage and belongs to the family Myoviridae. Here, we announce the complete genome sequence of phage HX01 and report the results of our analysis.  相似文献   

18.
Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.PSII is a multiprotein complex in plants with 31 identified polypeptides (Wegener et al., 2011; Pagliano et al., 2013). It is associated with an extrinsic trimeric light-harvesting complex (LHC), forming the PSII-LHCII supercomplex. The PSII complex performs a remarkable biochemical reaction, the oxidation of water using light energy from the sun, which profoundly contributes to the overall biomass accumulation in the biosphere (Barber et al., 2004). Consequently, the stability and functional integrity of the PSII-LHCII supercomplex is crucially important for photosynthetic function. The energy of a photon, either absorbed directly by PSII or indirectly via energy transfer from adjacent antenna chlorophyll (Chl) molecules, excites the PSII reaction center P680. The excited state, P680*, can transfer an electron to pheophytin, producing the most powerful oxidant known in biology, P680+, which can remove electrons from water. Excessive input of excitation energy into PSII saturates the electron transfer system and causes either acceptor or donor site limitation in the complex. This results in increased production of reactive oxygen species (ROS): singlet oxygen at the PSII donor side and superoxide at the acceptor side (Munné-Bosch et al., 2013). Several protective mechanisms have been documented that decrease the production of singlet oxygen at the PSII donor side in photosynthetic eukaryotes. Notably, reducing energy transfer from LHC to PSII via nonphotochemical quenching (NPQ) is a key avoidance mechanism (Ruban and Murchie, 2012).Despite years of intensive study of PSII structure and function, new proteins that are associated with the PSII complex continue to be discovered, including an increasing number involved in the stability and organization of PSII-LHCII supercomplexes (García-Cerdán et al., 2011; Lu et al., 2011a; Wegener et al., 2011). Two complementary approaches (Merchant et al., 2007; Lu et al., 2008, 2011b; Ajjawi et al., 2010) that utilize phylogenomics (GreenCut) and large-scale phenotypic mutant screening (Chloroplast 2010 Project; http://www.plastid.msu.edu/) were employed by our groups to discover novel plant proteins with roles in photosynthesis. GreenCut identifies proteins found only in photosynthetic organisms, and it is likely that many of them are involved in biochemical processes associated with the structure, assembly, or function of the photosynthetic apparatus and the chloroplast that houses it (Merchant et al., 2007; Karpowicz et al., 2011). The Chloroplast 2010 Project was a large-scale reverse-genetic mutant screen in which thousands of homozygous Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion lines were analyzed for defects in the rise and decay kinetics of Chl fluorescence (Lu et al., 2008, 2011a, 2011b; Ajjawi et al., 2010).The GreenCut and Chloroplast 2010 approaches both identified the Arabidopsis At1g71500 locus as encoding a protein of unknown function with potential relevance to photosynthesis. In this work, we demonstrate that plant lines carrying three independent mutations at this locus display severe light-induced photoinhibition due to a less stable supramolecular organization of PSII. Biochemical analyses revealed that this protein is associated with PSII complexes, and since the last described PSII protein was called PHOTOSYSTEM II PROTEIN32 (PSB32), we named the gene PSB33. The nuclear genome-encoded PSB33 is predicted to have a chloroplast transit peptide and a transmembrane domain. The biochemical analyses presented below indicate that PSB33 is required for the proper interaction and stability of PSII-LHCII supercomplexes and, in turn, in regulating photosynthesis in response to fluctuating light levels.  相似文献   

19.
For the extrinsic hand flexors (flexor digitorum profundus, FDP; flexor digitorum superficialis, FDS; flexor pollicis longus, FPL), moment arm corresponds to the tendon's distance from the center of the metacarpalphalangeal (MP), proximal interphalangeal (PIP), or distal interphalangeal (DIP) joint. The clinical value of establishing accurate moment arms has been highlighted for biomechanical modeling, the development of robotic hands, designing rehabilitation protocols, and repairing flexor tendon pulleys (Brand et al., 1975; An et al., 1983; Thompson and Giurintano, 1989; Deshpande et al., 2010; Wu et al., 2010). In this study, we define the moment arms for all of the extrinsic flexor tendons of the hand across all digital joints for all digits in cadaveric hands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号