首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to Darwinian evolution in which organisms have been selected by the instantaneous judgment of advantage or disadvantage for a mutated gene, the large-scale evolution of multicellular organisms by drastic changes in their genomes to produce new genes is theoretically formulated on the basis of the new concept of ‘biological activity’. The ‘biological activity’ of an organism is a macroscopic quantity determined by its whole genome and the environment, consisting of three terms; the energy acquired from the outside, the energy stored in the form of bio-molecules, and the systematization of multicellularity as well as of organizing genes and their products. The acquired energy minus stored energy is lost as heat, and the entropy production by the heat must compensate for the entropy reduction owing to the systematization in the organism. Under the boundary determined by this thermodynamic law, the organisms, which experienced gene duplication to produce new genes for multicellularity and cell differentiation, first decline to be minor members in a population by the increase in the energy to be stored and by the advanced systematization of cell differentiation. If the acquired energy is raised by the cooperative action of newly differentiated cells with the pre-existing types of cells, however, the ‘biological activity’ of this new style of organism can be recovered. The new style of organism generated through this evolutionary process does not necessarily expel the old style of organism to extinction but can coexist by choosing different material and energy resources. Moreover, this theory of large-scale evolution not only explains the punctuated mode of evolution indicated by paleontology but also reproduces the divergence of body plans observed in Triploblastica and Tracheophyta.  相似文献   

2.
The notion that gene duplications generating new genes and functions is commonly accepted in evolutionary biology. However, this assumption is more speculative from theory rather than well proven in genome-wide studies. Here, we generated an atlas of the rate of copy number changes (CNCs) in all the gene families of ten animal genomes. We grouped the gene families with similar CNC dynamics into rate pattern groups (RPGs) and annotated their function using a novel bottom-up approach. By comparing CNC rate patterns, we showed that most of the species-specific CNC rates groups are formed by gene duplication rather than gene loss, and most of the changes in rates of CNCs may be the result of adaptive evolution. We also found that the functions of many RPGs match their biological significance well. Our work confirmed the role of gene duplication in generating novel phenotypes, and the results can serve as a guide for researchers to connect the phenotypic features to certain gene duplications.  相似文献   

3.
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.  相似文献   

4.
5.
Gene duplication as a major force in evolution   总被引:4,自引:0,他引:4  
Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.  相似文献   

6.
Given that gene duplication is a major driving force of evolutionary change and the key mechanism underlying the emergence of new genes and biological processes, this study sought to use a novel genome-wide approach to identify genes that have undergone lineage-specific duplications or contractions among several hominoid lineages. Interspecies cDNA array-based comparative genomic hybridization was used to individually compare copy number variation for 39,711 cDNAs, representing 29,619 human genes, across five hominoid species, including human. We identified 1,005 genes, either as isolated genes or in clusters positionally biased toward rearrangement-prone genomic regions, that produced relative hybridization signals unique to one or more of the hominoid lineages. Measured as a function of the evolutionary age of each lineage, genes showing copy number expansions were most pronounced in human (134) and include a number of genes thought to be involved in the structure and function of the brain. This work represents, to our knowledge, the first genome-wide gene-based survey of gene duplication across hominoid species. The genes identified here likely represent a significant majority of the major gene copy number changes that have occurred over the past 15 million years of human and great ape evolution and are likely to underlie some of the key phenotypic characteristics that distinguish these species.  相似文献   

7.
Multigene families and the evolution of complexity   总被引:20,自引:0,他引:20  
Summary Higher organisms are complex, and their developmental processes are controlled by the sequential expression of genes that often form multigene families. Facts are surveyed on how functional diversity of genes is related to duplication of genes or segments of genes, by emphasizing that diversity is often enhanced by alternate splicing and proteolytic cleavage involving duplicated genes or gene segments. Analyses of a population genetics model for the origin of gene families suggest that positive Darwinian selection is needed for acquiring gene families with desirable functions. Based on these considerations, examples that show acceleration of amino acid substitution relative to synonymous change during evolutionary processes are surveyed. Some of such examples strongly suggest that positive selection has worked. In other cases it is difficult to judge whether or not acceleration is caused by positive Darwinian selection. As a general pattern, acceleration of amino acid substitution is often found to be related to gene duplication. It is thought that complexity and diversity of gene function have been advantageous in the long evolutionary course of higher organisms.  相似文献   

8.
Although the evolutionary significance of gene duplication has long been appreciated, it remains unclear what factors determine gene duplicability. In this study we investigated whether metabolism is an important determinant of gene duplicability because cellular metabolism is crucial for the survival and reproduction of an organism. Using genomic data and metabolic pathway data from the yeast (Saccharomyces cerevisiae) and Escherichia coli, we found that metabolic proteins indeed tend to have higher gene duplicability than nonmetabolic proteins. Moreover, a detailed analysis of metabolic pathways in these two organisms revealed that genes in the central metabolic pathways and the catabolic pathways have, on average, higher gene duplicability than do other genes and that most genes in anabolic pathways are single-copy genes.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

9.
Summary Gene duplications must play an important role in the evolutionary development of living organisms. Presented here is a general scheme that uses complementary alleles to isolate gene duplications in diploid organisms. The technique was used inDrosophila melanogaster to assess the rate of spontaneous gene duplication at two loci, maroon-like and rosy. The results indicate (1) that the rate of duplication of the maroon-like locus is on the order of 2.7×10–6; (2) that the rate of duplication of the rosy locus is approximately 1.7×10–4; and (3) that duplication occurs in males, suggesting that there may actually be two modes of gene duplication inDrosophila melanogaster.  相似文献   

10.
The development of evolutionary theory requires the resolution of the problem of relationships between random and regular processes in historical development of biological systems. According to the theory of natural selection, ecological factors play a leading role in evolution. Variations are nondirectional, unpredictable, and provide chaotic diversity of variants, only some of which are potentially useful. However, based on random processes, new variants that are useful for organisms and remain adaptive significance in various ecological situations are infrequent. At the same time, morphology demonstrates certain evolutionary patterns. The morphological approach takes into account the role in evolution of structural features of organism and social systems and evolutionary significance of “constructive technologies,” which distinguish morphological interpretation of evolutionary processes. The constructive and evolutionary patterns revealed in biological systems provide the basis for morphological interpretation of the principle of natural selection: both natural and artificial selection is interaction between social systems (populations, ecosystems, biogeocoenoses) and organisms composing them.  相似文献   

11.
The spinal muscular atrophy (SMA) region on chromosome 5q13 contains an inverted duplication of about 500 kb, and deleterious mutations in the survival motor neuron 1 (SMN1) gene cause SMA, a common lethal childhood neuropathy. We have used a number of approaches to probe the evolutionary history of these genes and show that SMN gene duplication and the appearance of SMN2 occurred at very distinct evolutionary times. Molecular fossil and molecular clock data suggest that this duplication may have occurred as recently as 3 million years ago in that the position and identity repetitive elements are identical for both human SMN genes and overall sequence divergence ranged from 0.15% to 0.34%. However, these approaches ignore the possibility of sequence homogenization by means of gene conversion. Consequently, we have used quantitative polymerase chain rection and analysis of allelic variants to provide physical evidence for or against SMN gene duplication in the chimpanzee, mankind's closest relative. These studies have revealed that chimpanzees have 2-7 copies of the SMN gene per diploid genome; however, the two nucleotides diagnostic for exons 7-8 and the SMNdelta7 mRNA product of the SMN2 gene are absent in non-human primates. In contrast, the SMN2 gene has been detected in all extant human populations studied to date, including representatives from Europe, the Central African Republic, and the Congo. These data provide conclusive evidence that SMN gene duplication occurred more than 5 million years ago, before the separation of human and chimpanzee lineages, but that SMN2 appears for the first time in Homo sapiens.  相似文献   

12.
August Krogh counseled the careful selection of the best subject organism on which to undertake mechanistic physiological research. But what if an organism with the desired properties does not exist? It is now within our power to engineer organisms genetically to achieve novel combinations of traits. I propose that it is a logical extension of the Krogh principle that we use biological methodologies to create novel organisms ideally suited for particular physiological studies. Transgenics may first come to mind as the method for such transformations, but here I suggest that an alternative and complementary technique for generating biological novelty is experimental evolution. The latter has several advantages, including modification of multiple characters in one experiment, the production of advantageous traits, the testing of evolutionary hypotheses, and the identification of previously unsuspected factors involved in adaptation. Three experiments are reviewed, each of which examined the evolution of different physiological characters in different environments and organisms: locomotor performance in mice, desiccation tolerance in fruit flies, and high temperature adaptation in bacteria. While diverse in experimental type and subject, all resulted in the successful production of new variants with enhanced function in their new environments. Each experiment successfully tested hypotheses concerning physiological evolution, and in each case, unanticipated results emerged, which suggests previously unsuspected adaptive pathways and mechanisms. In addition, replicate populations in each experiment adjusted to their common environments by several different means, which indicates that physiological evolution may follow diverse stochastic pathways during adaptation. Experimental evolution can be a valuable method to produce and investigate new physiological variants and traits. The choice of experimental subjects, according to the Krogh principle, is no longer limited to currently existing organisms but is open to our imaginations and our ingenuity.  相似文献   

13.
14.
Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.  相似文献   

15.
唐康  杨若林 《植物学报》1983,54(3):316-327
物种基因组成是一个高度动态的进化过程, 其中相对较近起源的种系和物种特异性基因会持续整合到包含古老基因的原始基因网络中。新基因在塑造基因组结构中发挥重要作用, 能提高物种适应性。基因复制和新基因的从头起源是产生新基因及改变基因家族大小的2种方式。目前, 大豆(Glycine max)基因起源时间与进化模式的相互联系很大程度上还未被探索。该研究选择19种具有代表性的被子植物基因组, 分析基因含量动态性与大豆基因起源之间的潜在联系。采用基因出现法, 研究显示约58.7%的大豆基因能追溯到大约1.5亿年前, 同时有21.7%的基因为最近起源的orphan基因。研究结果表明, 与新基因相比, 古老基因受到更强的负选择压并且更加保守。此外, 古老基因的表达水平更高且更可能发生选择性剪切。此外, 具有不同拷贝数的基因在上述特征中也具有明显差异。研究结果有助于认识不同年龄基因的进化模式。  相似文献   

16.
唐康  杨若林 《植物学报》2019,54(3):316-327
物种基因组成是一个高度动态的进化过程, 其中相对较近起源的种系和物种特异性基因会持续整合到包含古老基因的原始基因网络中。新基因在塑造基因组结构中发挥重要作用, 能提高物种适应性。基因复制和新基因的从头起源是产生新基因及改变基因家族大小的2种方式。目前, 大豆(Glycine max)基因起源时间与进化模式的相互联系很大程度上还未被探索。该研究选择19种具有代表性的被子植物基因组, 分析基因含量动态性与大豆基因起源之间的潜在联系。采用基因出现法, 研究显示约58.7%的大豆基因能追溯到大约1.5亿年前, 同时有21.7%的基因为最近起源的orphan基因。研究结果表明, 与新基因相比, 古老基因受到更强的负选择压并且更加保守。此外, 古老基因的表达水平更高且更可能发生选择性剪切。此外, 具有不同拷贝数的基因在上述特征中也具有明显差异。研究结果有助于认识不同年龄基因的进化模式。  相似文献   

17.
Zein gene organization in maize and related grasses   总被引:1,自引:0,他引:1  
Summary Zein cDNA clones were used to study the organization of zein genes within the genome of the inbred maize W64A. When individual clones for the two larger molecular-weight classes of zein proteins (Mr=22,000; Mr=19,000) were used as probes for Southern blot hybridizations of genomic DNA, multiple restriction fragments were found to hybridize. Reconstruction analyses using moderately stringent criteria were used to estimate a total of 70–80 zein sequences within the genome of this inbred maize. The hybridization patterns suggest that zein sequences are clustered within the same restriction fragment. When criteria permitting less cross-hybridization of homologous sequences (Tm-10°C) were used, the banding pattern changed, with some of the bands being reduced in intensity or eliminated entirely. Therefore, by control of hybridization criteria, particular zein genes may be more readily distinguished in a Southern blot analysis. The Southern blot hybridization pattern for the Mr=15,000 zein was less complex. Only a single major band was found, with sufficient hybridization intensity for two or three genes.Genomic Southern analyses of other inbred maizes and related grasses showed similarly complex hybridization patterns with cDNA probes for the 19,000- and 22,000-molecular-weight zeins, suggesting that these sequences have been conserved over evolutionary time. The zein multigene family may therefore have arisen by gene duplication before divergence of the maize, teosinte, andTripsacum species from a common ancestor.This is Journal Paper number 9525 of the Purdue Agriculture Experiment Station  相似文献   

18.
Genes can be classified as essential or nonessential based on their indispensability for a living organism. Previous researches have suggested that essential genes evolve more slowly than nonessential genes and the impact of gene dispensability on a gene’s evolutionary rate is not as strong as expected. However, findings have not been consistent and evidence is controversial regarding the relationship between the gene indispensability and the rate of gene evolution. Understanding how different classes of genes evolve is essential for a full understanding of evolutionary biology, and may have medical relevance in the design of new antibacterial agents. We therefore performed an investigation into the properties of essential and nonessential genes. Analysis of evolutionary conservation, protein length distribution and amino acid usage between essential and nonessential genes in Escherichia coli K12 demonstrated that essential genes are relatively preserved throughout the bacterial kingdom when compared to nonessential genes. Furthermore, results show that essential genes, compared to nonessential genes, have a significantly higher proportion of large (>534 amino acids) and small proteins (<139 amino acids) relative to medium-sized proteins. The pattern of amino acids usage shows a similar trend for essential and nonessential genes, although some notable exceptions are observed. These findings help to clarify our understanding of the evolutionary mechanisms of essential and nonessential genes, relevant to the study of mutagenesis and possibly allowing prediction of gene properties in other poorly understood organisms.  相似文献   

19.
Gene duplication is considered to be the most important evolutionary process for generating novel genes. However, the mechanisms involved in the evolution of such genetic innovations remain unclear. There is compelling evidence to suggest that changing the subcellular location of a protein can also alter its function, and that diversity in subcellular targeting within gene families is common. Here, we introduce the idea that protein subcellular relocalization might be an important evolutionary mechanism for the origins of new genes.  相似文献   

20.
Gene duplication, arising from region-specific duplication or genome-wide polyploidization, is a prominent feature in plant genome evolution. Understanding the mechanisms generating duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on regional and genome-wide aspects of evolutionary forces shaping intra- and interspecific genome contents, evolutionary relationships, and interactions. This review discusses recent gene duplication analyses in plants, focusing on the molecular and evolutionary dynamics occurring at three different timescales following duplication: (1). initial establishment and persistence of cytotypes, (2). interactions among duplicate gene copies, and (3). longer term differentiation between duplicated genes. These relative time points are presented in terms of their potential adaptive significance and impact on plant evolutionary genomics research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号