首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The microneme proteins of Toxoplasma gondii belong to a large family of adhesins of apicomplexan parasites involved in motility and host cell invasion. During secretory transport, soluble micronemes associate with membrane-bound carriers/escorters and become exposed on the parasite surface as complexes with an array of adhesive domains. Previously, we have exploited the intestinal protozoan Giardia lamblia as an expression system to produce correctly folded and unglycosylated monomeric surface proteins of T. gondii. Here, we report assembly and export of a trimeric microneme (MIC1/4/6) adhesin complex from Toxoplasma. Co-expressed, recombinant microneme proteins were used to investigate structural requirements for microneme complex formation. In addition, export of a microneme subunit induced development of novel Golgi-like compartments demonstrating the existence of post endoplasmic reticulum structures involved in constitutive secretion in this 'Golgi-less' cell. Recreation of the trimeric microneme escorter-cargo system in Giardia is a versatile tool to analyse universal requirements for complex assembly, receptor-ligand interactions and Golgi neogenesis in the basal Giardia secretory system.  相似文献   

3.
During evolution of proteins from a common ancestor, one functional property can be preserved while others can vary leading to functional diversity. A systematic study of the corresponding adaptive mutations provides a key to one of the most challenging problems of modern structural biology – understanding the impact of amino acid substitutions on protein function. The subfamily-specific positions (SSPs) are conserved within functional subfamilies but are different between them and, therefore, seem to be responsible for functional diversity in protein superfamilies. Consequently, a corresponding method to perform the bioinformatic analysis of sequence and structural data has to be implemented in the common laboratory practice to study the structure–function relationship in proteins and develop novel protein engineering strategies. This paper describes Zebra web server – a powerful remote platform that implements a novel bioinformatic analysis algorithm to study diverse protein families. It is the first application that provides specificity determinants at different levels of functional classification, therefore addressing complex functional diversity of large superfamilies. Statistical analysis is implemented to automatically select a set of highly significant SSPs to be used as hotspots for directed evolution or rational design experiments and analyzed studying the structure–function relationship. Zebra results are provided in two ways – (1) as a single all-in-one parsable text file and (2) as PyMol sessions with structural representation of SSPs. Zebra web server is available at http://biokinet.belozersky.msu.ru/zebra.  相似文献   

4.
Fragment-HMM: a new approach to protein structure prediction   总被引:1,自引:0,他引:1  
We designed a simple position-specific hidden Markov model to predict protein structure. Our new framework naturally repeats itself to converge to a final target, conglomerating fragment assembly, clustering, target selection, refinement, and consensus, all in one process. Our initial implementation of this theory converges to within 6 A of the native structures for 100% of decoys on all six standard benchmark proteins used in ROSETTA (discussed by Simons and colleagues in a recent paper), which achieved only 14%-94% for the same data. The qualities of the best decoys and the final decoys our theory converges to are also notably better.  相似文献   

5.
6.
Iwanaga S  Kato T  Kaneko I  Yuda M 《PloS one》2012,7(3):e33326
The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite.  相似文献   

7.
Curation and interpretation of protein databank-search results by human experts are key aspects of MS-based proteomic data acquisition. These tasks are often overlooked due to the vast amount of data to inspect. We have developed myProMS, a web server designed to ease search results validation and interpretation by improving data organization, mining and sharing between MS specialists and biologists during MS-based collaborative projects. A demo is accessible at http://bioinfo.curie.fr/myproms.  相似文献   

8.
《Genomics》2019,111(6):1514-1516
The secretome refers to all the Excreted/Secreted (ES) proteins of a cell, and these are involved in critical biological processes, such as cell-cell communication, and host immune responses. Recently, we introduced the Abundance of Antigenic Aegions (AAR) value to assess the protein antigenic density and to evaluate the antigenic potential of secretomes. Here, to facilitate the AAR calculation, we implemented it as a user-friendly webserver. We extended the webserver capabilities implementing a sequence-based tool for searching homologous proteins across secretomes, including experimental and predicted secretomes of Mycobacterium tuberculosis and Taenia solium. Additionally, twelve secretomes of helminths, five of Mycobacterium and two of Gram-negative bacteria are also available. Our webserver is a useful tool for researchers working on immunoinformatics and reverse vaccinology, aiming at discovering candidate proteins for new vaccines or diagnostic tests, and it can be used to prioritize the experimental analysis of proteins for druggability assays. The Secret-AAR web server is available at http://microbiomics.ibt.unam.mx/tools/aar/.  相似文献   

9.
10.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.  相似文献   

11.
The physicochemical mechanism of protein folding has been elucidated by the island model, describing a growth type of folding. The folding pathway is closely related with nucleation on the polypeptide chain and thus the formation of small local structures or secondary structures at the earliest stage of folding is essential to all following steps. The island model is applicable to any protein, but a high precision of secondary structure prediction is indispensable to folding simulation. The secondary structures formed at the earliest stage of folding are supposed to be of standard form, but they are usually deformed during the folding process, especially at the last stage, although the degree of deformation is different for each protein. Ferredoxin is an example of a protein having this property. According to X-ray investigation (1FDX), ferredoxin is not supposed to have secondary structures. However, if we assumed that in ferredoxin all the residues are in a coil state, we could not attain the correct structure similar to the native one. Further, we found that some parts of the chain are not flexible, suggesting the presence of secondary structures, in agreement with the recent PDB data (1DUR). Assuming standard secondary structures (-helices and -strands) at the nonflexible parts at the early stage of folding, and deforming these at the final stage, a structure similar to the native one was obtained. Another peculiarity of ferredoxin is the absence of disulfide bonds, in spite of its having eight cysteines. The reason cysteines do not form disulfide bonds became clear by applying the lampshade criterion, but more importantly, the two groups of cysteines are ready to make iron complexes, respectively, at a rather later stage of folding. The reason for poor prediction accuracy of secondary structure with conventional methods is discussed.  相似文献   

12.
microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at http://mirna.jnu.ac.in/cidmirna/.  相似文献   

13.
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results.  相似文献   

14.
Plants have diverse ways of responding to damage by herbivores, such as changes in allelochemistry, physiology, morphology, growth, and phenology. These responses form the mechanistic basis for trait-mediated indirect interactions (TMIIs) between organisms on the plants. There is a growing appreciation that such TMIIs form complex networks (i.e., indirect interaction webs) in terrestrial plant-associated arthropod communities. Almost all previous studies have had the same framework: examining trait-mediated indirect effects within a single interactive unit consisting of one initiator of herbivore, a host plant as a mediator, and one receiver [trait-mediated indirect interaction unit (TMIU)]. However, this framework is too simple to understand the dynamics of the indirect interaction web. Recent studies suggest that there is a wide variety of interactions among TMIUs within a community, which may largely affect the outcomes of indirect effects in each unit. Here, we review recent advance in studies of trait-mediated indirect effects in plant-associated arthropod communities and explore the mechanisms of linkages among TMIUs. Then, we argue the importance of examining linkages among TMIUs as a new framework for future studies on the indirect interaction web. Finally, we propose the hypothesis that linkages among TMIUs contribute to the maintenance of biodiversity.  相似文献   

15.
Protein phosphorylation is an important mechanism that implicates in physiology of any organism including parasitic protozoa. Metallic protein Ser/Thr protein phosphatase 5 (PP5) controls various cellular signaling pathways of Plasmodium falciparum. The structure and inhibitory mechanism of PP5 in P. falciparum is not known. In fact, no experimental structural data are available for P. falciparum Ser/Thr protein phosphatase 5 (PfPP5) till date. Hence, we have proposed computer-generated model of catalytic subunit of PfPP5 and its inhibitory mechanism was analyzed. A set of 42 known natural inhibitors of protein phosphate family were docked against metal-binding catalytic site of PfPP5 and we found that cantharidin and its derivatives shows better binding energy among them. Similarity search was performed by taking these compounds as lead compounds against PubChem and ChemBank. The search result provides 3703 similar compounds; out of which 2245 qualified the Lipinski rule of five. Further, virtual screening of these compounds was performed and selected top 25 were selected on the basis of binding energy. In continuation, rigid and flexible docking of these screened compounds was performed to get the insight of interactions. Finally, top 5 compounds were verified for ADMET properties, and then, all are subjected to MD simulations for 25 ns in order to validate their stability. Compounds CBI: 3554182, CID: 23561913, and CID: 21168680 showed most stable binding, although some of hydrogen bonds pairing varied throughout simulation. These finding would be helpful to the medicinal chemists for the development of antimalarial drugs to combat this deadly disease.  相似文献   

16.
Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.  相似文献   

17.
Prioritization of compounds using inverse docking approach is limited owing to potential drawbacks in its scoring functions. Classically, molecules ranked by best or lowest binding energies and clustering methods have been considered as probable hits. Mining probable hits from an inverse docking approach is very complicated given the closely related protein targets and the chemically similar ligand data set. To overcome this problem, we present here a computational approach using receptor‐centric and ligand‐centric methods to infer the reliability of the inverse docking approach and to recognize probable hits. This knowledge‐driven approach takes advantage of experimentally identified inhibitors against a particular protein target of interest to delineate shape and molecular field properties and use a multilayer perceptron model to predict the biological activity of the test molecules. The approach was validated using flavone derivatives possessing inhibitory activities against principal antimalarial molecular targets of fatty acid biosynthetic pathway, FabG, FabI and FabZ, respectively. We propose that probable hits can be retrieved by comparing the rank list of docking, quantitative‐structure activity relationship and multilayer perceptron models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This review is the result of a kind invitation to provide a report on the basis of the Leonidas Zervas award lecture at the 32nd European Peptide Society in Athens, Greece, September 2012. The lecture covered several topics including contributions toward new methods for the assembly of peptides and chemical modification of proteins. The present review will focus on another topic from the Zervas lecture, namely, our recent efforts at creating new, artificial architectures for the organization of the quaternary structure of proteins. Crucially, this is achieved with abiotic ligands and not protein surface engineering. This concept was demonstrated for the important biopharmaceutical peptide insulin, by using both abiotic metal ion binding ligands and perfluoroalkyl chains. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Gelhaus C  Fritsch J  Krause E  Leippe M 《Proteomics》2005,5(16):4213-4222
Since completion of genome sequencing of the malarial parasite Plasmodium falciparum, proteomic tools for the identification of parasite proteins have become particularly attractive as they allow a more thorough interpretation of these data. Recent advances in 2-D PAGE, MS, and bioinformatics have created great opportunities for mapping and characterization of protein populations. We employed these improvements in a proteomic approach for the analysis of proteins detected in two blood stages of P. falciparum, (i) in the schizont stage and (ii) in the merozoite stage. For the isolation of merozoites, we introduced a new protocol based on the preparation of clustered structures of merozoites upon treatment of cultures with the common cysteine proteinase inhibitor E64. Peptide mass fingerprints of excised and trypsinated protein spots, acquired by MALDI-TOF MS were generated to identify a variety of proteins. Moreover, prefractionation procedures were used to enrich and map low-abundance proteins in protein samples. The data demonstrate that classic proteomic analyses using 2-D PAGE are now feasible for P. falciparum and represent the first step in the direction of creating 2-D reference maps for this medically most relevant protozoon.  相似文献   

20.
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1Hα and 13C′ chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号