首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, an analytical method is introduced for the identification of predator-prey populations time-dependent evolution in a Lotka-Volterra predator-prey model which takes into account the concept of accelerated-predator-satiety.Oppositely to most of the predator-prey problem models, the actual model does not suppose that the predation is strictly proportional to the prey density. In reference to some recent experimental results and particularly to the conclusions of May (1973) about predators which are ‘never not hungry’, an accelerated satiety function is matched with the initial conventional equations. Solutions are plotted and compared to some relevant ones. The obtained trends are in good agreement with many standard Lotka-Volterra solutions except for the asymptotic behaviour.  相似文献   

2.
研究了时滞对一类非自治Lotka-Volterra型捕食扩散系统的影响,该系统由n个斑块组成,食饵种群可以在斑块间迁移,而摘食者限制在某一个斑块不能扩散.我们假设密度制约项系数并不总是严格正的.通过运用比较定理及时滞泛函微分方程的基本原理,分两种情况表明了在一定条件下系统是一致持久的.两种情况的结果表明时滞的引入和变化即可能是“有害”,也可能是”无害”.进一步还说明了系统在一致持久性的条件下至少存在一个正周期解.这些结果是对已知的非自治Lotka-Volterra系统的一些结果的推广与改进.  相似文献   

3.
陈斯养  靳宝 《生态学报》2015,35(7):2339-2348
讨论了具时滞与分段常数变量的捕食-食饵生态模型的稳定性及Neimark-Sacker分支;通过计算得到连续模型对应的差分模型,基于特征值理论和Schur-Cohn判据得到正平衡态局部渐进稳定的充分条件;以食饵的内禀增长率为分支参数,运用分支理论和中心流形定理分析了Neimark-Sacker分支的存在性与稳定性条件;通过举例和数值模拟验证了理论的正确性。  相似文献   

4.
This paper studies a non-autonomous Lotka-Volterra almost periodic predator-prey dispersal system with discrete and continuous time delays which consists of n-patches, the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. By using comparison theorem and delay differential equation basic theory, we prove the system is uniformly persistent under some appropriate conditions. Further, by constructing suitable Lyapunov functional, we show that the system is globally asymptotically stable under some appropriate conditions. By using almost periodic functional hull theory, we show that the almost periodic system has a unique globally asymptotical stable strictly positive almost periodic solution. The conditions for the permanence, global stability of system and the existence, uniqueness of positive almost periodic solution depend on delays, so, time delays are "profitless". Finally, conclusions and two particular cases are given. These results are basically an extension of the known results for non-autonomous Lotka-Volterra systems.  相似文献   

5.
A hierarchy of scales is introduced to the spatially heterogeneous Lotka-Volterra predator-prey diffusion model, and its effects on the model's spatial and temporal behavior are studied. When predators move on a large scale relative to prey, local coupling of the predator-prey interaction is replaced by global coupling. Prey with low dispersal ability become narrowly confined to the most productive habitats, strongly amplifying the underlying spatial pattern of the environment. As prey diffusion rate increases, the prey distribution spreads out and predator abundance declines. The model retains neutrally stable Lotka-Volterra temporal dynamics: different scales of predator and prey dispersal do not stabilize the interaction. The model predicts that, for prey populations that are limited by widely ranging predators, species with low dispersal ability should be restricted to discrete high density patches, and those with greater mobility should be more uniformly distributed at lower density.  相似文献   

6.
We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical “aggregation method” in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a “disease-free” or to a “disease-endemic” state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the “disease-free” equilibrium (DFE).  相似文献   

7.
A modification of the Lotka-Volterra model was proposed. The modification takes into account the factor of seasonal fluctuations in a "predator-prey" model. In this modification, interactions between species in summer are described by the Lotka-Volterra equations; in winter, individuals of both species extinct. This generalization makes the classic model unrough, which substantially extends the field of its application. The results of numerical simulation illustrate the statement formulated above.  相似文献   

8.
We consider a spatially distributed predator-prey system in which population exchange between cells can occur at only certain points in the predation cycle. Studying the characteristics of this discrete event model, by both analytic and simulation methods, we show that indefinite persistence of populations is possible over a wide range of parameter settings, even though the cells all tend to rapid extinction in isolation. The persistence is shown to take two forms: one in which a constant distribution of cells both in phase and space is maintained, and one in which this homogeneity of distribution is replaced by dynamically stable patterns of patches and waves. The former is shown to be neatly describable by the classical Lotka-Volterra equation. In contrast, persistence of locally unstable Lotka-Volterra predator-prey systems in both forms is shown to be impossible when the discrete population exchange mechanism is replaced by one of the continuous linear diffusion type.  相似文献   

9.
10.
Cannibalism in an age-structured predator-prey system   总被引:3,自引:0,他引:3  
Recently, Kohlmeier and Ebenhöh showed that cannibalism can stabilize population cycles in a Lotka-Volterra type predator-prey model. Population cycles in their model are due to the interaction between logistic population growth of the prey and a hyperbolic functional response. In this paper, we consider a predator-prey system where cyclic population fluctuations are due to the age structure in the predator species. It is shown that cannibalism is also a stabilizing mechanism when population oscillations are due to this age structure. We conclude that in predator-prey systems, cannibalism by predators can stabilize both externally generated (consumer-resource) as well as internally generated (agestructure) fluctuations.  相似文献   

11.
Time delays produced by dispersal are shown to stabilize Lotka-Volterra predator-prey models. The models are formulated as integrodifferential equations that describe local predator-prey dynamics and either intrapatch or interpatch dispersal. Dispersing individuals may (or may not) differ in the duration of their trips; these differences are captured via a distributed delay in the models. Our results include those of previous studies as special cases and show that the stabilizing effect continues to operate when the dispersal process is modeled more realistically.  相似文献   

12.
The familiar concepts of harvest and yield are developed for the purpose of describing predator-prey interactions in a community context. In this regard the functional response (appropriate for one predator-one prey systems) is replaced by a community harvest function. Conditions for the stability of an ecological community are obtained. Exploring the dynamics of predator-prey interactions within this framework leads to new interpretations of other dynamical models such as the Lotka-Volterra model. The concept of a community moving attractor point is introduced in order to describe the changes in all populations over time.  相似文献   

13.
This work presents a predator-prey Lotka-Volterra model in a two patch environment. The model is a set of four ordinary differential equations that govern the prey and predator population densities on each patch. Predators disperse with constant migration rates, while prey dispersal is predator density-dependent. When the predator density is large, the dispersal of prey is more likely to occur. We assume that prey and predator dispersal is faster than the local predator-prey interaction on each patch. Thus, we take advantage of two time scales in order to reduce the complete model to a system of two equations governing the total prey and predator densities. The stability analysis of the aggregated model shows that a unique strictly positive equilibrium exists. This equilibrium may be stable or unstable. A Hopf bifurcation may occur, leading the equilibrium to be a centre. If the two patches are similar, the predator density dependent dispersal of prey has a stabilizing effect on the predator-prey system.  相似文献   

14.
This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.  相似文献   

15.
In this article we study the inverse problem of finding coefficients of Lotka-Volterra equations from one given solution. The conditions of existence and uniqueness of the inverse problem are found.  相似文献   

16.
The random predator-prey type interactions of the population species in a random varying environment have been investigated. The Fokker-Planck equation for the transition probability, corresponding to the stochastic differential equations established from Lotka-Volterra equations by the introduction of randomness and variability, has been integrated in the form of a path integral. The transition probabilities for extinction or survival of one or several species have been approximately evaluated and investigated.  相似文献   

17.
Predator-prey dynamics in P systems ruled by metabolic algorithm   总被引:1,自引:0,他引:1  
Fontana F  Manca V 《Bio Systems》2008,91(3):545-557
P systems are used to compute predator-prey dynamics expressed in the traditional formulation by Lotka and Volterra. By governing the action of the transition rules in such systems using the regulatory features of the metabolic algorithm we come up with simulations of the Lotka-Volterra equations, whose robustness is comparable to that obtained using Runge-Kutta schemes and Gillespie's Stochastic Simulation Algorithm. Besides their reliability, the results obtained using the metabolic algorithm on top of P systems have a clear biochemical interpretation concerning the role, of reactants or promoters, of the species involved.  相似文献   

18.
Impact of spatial heterogeneity on a predator-prey system dynamics   总被引:2,自引:0,他引:2  
This paper deals with the study of a predator-prey model in a patchy environment. Prey individuals moves on two patches, one is a refuge and the second one contains predator individuals. The movements are assumed to be faster than growth and predator-prey interaction processes. Each patch is assumed to be homogeneous. The spatial heterogeneity is obtained by assuming that the demographic parameters (growth rates, predation rates and mortality rates) depend on the patches. On the predation patch, we use a Lotka-Volterra model. Since the movements are faster that the other processes, we may assume that the frequency of prey and predators become constant and we would get a global predator-prey model, which is shown to be a Lotka-Volterra one. However, this simplified model at the population level does not match the dynamics obtained with the complete initial model. We explain this phenomenom and we continue the analysis in order to give a two-dimensional predator-prey model that gives the same dynamics as that provided by the complete initial one. We use this simplified model to study the impact of spatial heterogeneity and movements on the system stability. This analysis shows that there is a globally asymptotically stable equilibrium in the positive quadrant, i.e. the spatial heterogeneity stabilizes the equilibrium.  相似文献   

19.
Sigmoid functional responses are known to stabilize the differential Lotka-Volterra predator-prey model. However, we have found that they have no such effect in a comparable discrete generation model. The difficulty in stabilizing this model results from the one-generation time delay between changes in predator population density and the level of prey mortality. By contrast, sigmoid functional responses can stabilize the system if the predator population remains relatively constant, as is more likely of generalist predators.  相似文献   

20.
It takes time for individuals to move from place to place. This travel time can be incorporated into metapopulation models via a delay in the interpatch migration term. Such a term has been shown to stabilize the positive equilibrium of the classical Lotka-Volterra predator-prey system with one species (either the predator or the prey) dispersing. We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying capacity for the prey, and saturating functional response for the predator. We show that dispersal delays can stabilize the predator-prey equilibrium point despite the presence of a Type II functional response that is known to be destabilizing. We also show that dispersal delays reduce the amplitude of oscillations when the equilibrium is unstable, and therefore may help resolve the paradox of enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号