首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, there is little structural data available on the AGAAAAGA palindrome in the hydrophobic region (113–120) of prion proteins, although many experimental studies have shown that this region has amyloid fibril forming properties. This region belongs to the N-terminal unstructured region (1–123) of prions, the structure of which has proved hard to determine using NMR or X-ray crystallography. This paper reports the successful construction of three amyloid fibril models for this region. The models were formatted by standard simulated annealing using suitable templates from the Protein Data Bank, and were refined using several traditional optimization methods within AMBER. Because the NMR or X-ray structure of the hydrophobic region AGAAAAGA of prion proteins has not yet been determined, these models can be used as a reference for experimental studies on this region. The results presented here confirm standard simulated annealing as an effective tool in molecular modeling. The three constructed models for amyloid fibrils may be useful in furthering the goals of medicinal chemistry in this field.  相似文献   

2.
3.
The full-length mouse prion protein, moPrP, is shown to form worm-like amyloid fibrils at pH 2 in the presence of 0.15 M NaCl, in a slow process that is accelerated at higher temperatures. Upon reduction in pH to 2, native moPrP transforms into a mixture of soluble β-rich oligomers and α-rich monomers, which exist in a slow, concentration-dependent equilibrium with each other. It is shown that only the β-rich oligomers and not the α-rich monomers, can form worm-like amyloid fibrils. The mechanism of formation of the worm-like amyloid fibrils from the β-rich oligomers has been studied with four different physical probes over a range of temperatures and over a range of protein concentrations. The observed rate of fibrillation is the same, whether measured by changes in ellipticity at 216 nm, in thioflavin fluorescence upon binding, or in the mean hydrodynamic radius. The observed rate is significantly slower when monitored by total scattering intensity, suggesting that lateral association of the worm-like fibrils occurs after they form. The activation energy for worm-like fibril formation was determined to be 129 kJ/mol. The observed rate of fibrillation increases with an increase in protein concentration, but saturates at protein concentrations above 50 μM. The dependence of the observed rate of fibrillation on protein concentration suggests that aggregate growth is rate-limiting at low protein concentration and that conformational change, which is independent of protein concentration, becomes rate-limiting at higher protein concentrations. Hence, fibril formation by moPrP occurs in at least two separate steps. Longer but fewer worm-like fibrils are seen to form at low protein concentration, and shorter but more worm-like fibrils are seen to form at higher protein concentrations. This observation suggests that the β-rich oligomers grow progressively in size to form critical higher order-oligomers from which the worm-like amyloid fibrils then form.  相似文献   

4.
Using the experimental structures of Abeta amyloid fibrils and all-atom molecular dynamics, we study the force-induced unbinding of Abeta peptides from the fibril. We show that the mechanical dissociation of Abeta peptides is highly anisotropic and proceeds via different pathways when force is applied in parallel or perpendicular direction with respect to the fibril axis. The threshold forces associated with lateral unbinding of Abeta peptides exceed those observed during the mechanical dissociation along the fibril axis. In addition, Abeta fibrils are found to be brittle in the lateral direction of unbinding and soft along the fibril axis. Lateral mechanical unbinding and the unbinding along the fibril axis load different types of fibril interactions. Lateral unbinding is primarily determined by the cooperative rupture of fibril backbone hydrogen bonds. The unbinding along the fibril axis largely depends on the interpeptide Lys-Asp electrostatic contacts and the hydrophobic interactions formed by the Abeta C terminal. Due to universality of the amyloid beta structure, the anisotropic mechanical dissociation observed for Abeta fibrils is likely to be applicable to other amyloid assemblies. The estimates of equilibrium forces required to dissociate Abeta peptide from the amyloid fibril suggest that these supramolecular structures are mechanically stronger than most protein domains.  相似文献   

5.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   

6.
Amyloid fibrils have been recognized as having potential in a variety of bionanotechnological applications. However, realization of these applications is constrained by a lack of control over morphology and alignment, both crucial for potential end uses. This article focuses on the use of growth and storage conditions to control the length of amyloid fibrils formed from bovine insulin, with length distributions constructed from transmission electron microscopy (TEM) images. Growth temperature, pH, protein concentration, and storage conditions were examined and were seen to offer a range of conditions that favor different length distribution. The use of amyloid fibrils as nanowires is one area where control of fibril dimensions is desirable, for experimental setup and endpoint applications. The conductive properties of fibrils formed from bovine insulin are presented, with these insulin fibrils being shown to have high resistivity in their unmodified state, with current values in the nanoamp range. These low current values can be increased via modification, or the fibrils used in their native state in applications where low current values are desirable. These findings, coupled with the ability to predict and select for various insulin amyloid fibril dimensions, enhances their utility as nanomaterials.  相似文献   

7.
8.
Despite the ability of most proteins to form amyloid, very little is know about amyloid fibril structures and the factors that govern their stability. Using amyloid fibrils produced from full-length prion protein (PrP), we describe a reliable approach for determining both site-specific and global conformational stability of the fibrillar form. To measure site-specific stability, we produced six variants of PrP by replacing the residues at positions 88, 98, 127, 144, 196, and 230 with cysteine, labeled the new cysteines with the fluorescent dye acrylodan, and investigated their conformational status within the amyloid form in guanidine hydrochloride-induced denaturation experiments. We found that the fibrils labeled at positions 127, 144, 196, and 230 displayed cooperative unfolding and showed a very high C1/2 value similar to that observed for the global unfolding of the amyloid structure. The unfolding at residue 98 was also cooperative; however, it showed a C1/2 value substantially lower than that of global unfolding, whereas the unfolding of fibrils labeled at residue 88 was non-cooperative. These data illustrate that there are at least two independent cooperative folding domains within the amyloid structure of the full-length PrP. In addition, kinetic experiments revealed only a partial overlap between the region that constituted the fibrillar cross-beta core and the regions that were involved in nucleation. This result illustrates that separate PrP regions accounted for the nucleation and for the formation of the conformationally most stable fibrillar core.  相似文献   

9.
Guo JT  Wetzel R  Xu Y 《Proteins》2004,57(2):357-364
Amyloid fibrils, a key pathological feature of Alzheimer's disease (AD) and other amyloidosis implicated in neurodegeneration, have a characteristic cross-beta structure. Here we present a structural model for the core of amyloid fibrils formed by the Abeta peptide using computational approaches and experimental data. Abeta(15-36) was threaded against the parallel beta-helical proteins. Our multi-layer model was constructed using the top scoring template 1lxa, a left-handed parallel beta-helical protein. This six-rung helical model has in-register repeats of the Abeta(15-36) sequence. Each rung has three beta-strands separated by two turns. The model was tested using molecular dynamics simulations in explicit water, and is in good agreement with a number of experimental observations. In addition, a model based on right-handed helical proteins is also described. The core structural model described here might serve as the building block of the Abeta(1-40) amyloid fibril as well as some other amyloid fibrils.  相似文献   

10.
We report the results of atomic force microscopy, Fourier-transform infrared spectroscopy, solid-state nuclear magnetic resonance, and molecular dynamics (MD) calculations for amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein (H1). Our data reveal that H1 fibrils contain no more than two β-sheet layers. The peptide strands of H1 fibrils are antiparallel with the A117 residues aligned to form a linear chain in the direction of the fibril axis. The molecular structure of the H1 fibrils, which adopts the motif of steric zipper, is highly uniform in the region of the palindrome sequence AGAAAAGA. The closest distance between the two adjacent β-sheet layers is found to be about 5 Å. The structural features of the molecular model of H1 fibrils obtained by MD simulations are consistent with the experimental results. Overall, our solid-state NMR and MD simulation data indicate that a steric zipper, which was first observed in the crystals of fibril-forming peptides, can be formed in H1 fibrils near the region of the palindrome sequence.  相似文献   

11.
12.
Abstract

In the paper three vector algorithms (with original data structures and no nearest neighbour lists) for Molecular Dynamics simulation are compared and their timings presented. The timings have been obtained on ETA 10-P*108 and IBM 3090/150E (with Vector Facility) computers as well as on several microprocessors (e.g. MOTOROLA MC68020/68881, INTEL i80386/387, i486 and INMOS TRANSPUTER T800).  相似文献   

13.
The mechanism by which proteins aggregate and form amyloid fibrils is still elusive. In order to preclude interference by cellular factors and to clarify the role of the primary sequence of Sup35p prion domain in formation of amyloid fibrils, we generated five Sup35NM variants by randomizing amino acid sequences in PrDs without altering the amino acid composition and analyzed the in vitro process of amyloid fibril formation. The results showed that each of the five Sup35NM variants polymerized into amyloid fibrils in vitro under native conditions. Furthermore, the Sup35NM variants showed differences in their aggregation time courses. These findings indicate that specific amino acid sequence features in PrD can modify the rate of conversion of Sup35p into amyloid fibrils in vitro.  相似文献   

14.
Human amylin is a 37 amino acid residue peptide hormone whose fibrillogenesis has been correlated with type 2 diabetes. These fibrils are rope-like bundles of several 5nm diameter protofilaments. Here, we propose, as a model for the protofilament, a variant of the parallel superpleated beta-structure previously derived for amyloid filaments of the yeast prion Ure2p. In the amylin model, individual polypeptides from residues 9 to 37 have a planar S-shaped fold with three beta-strands. These serpentines are stacked in register, with a 0.47 nm axial rise and a small rotational twist per step, generating an array of three parallel beta-sheets in cross-beta conformation. The interior, the two "bays" sandwiched between adjacent sheets, are occupied by non-polar and by polar/uncharged residues that are predicted to form H-bonded ladders, similar to those found in beta-helical proteins. The N-terminal peptide containing a disulfide bond occupies an extraneous peripheral position in the protofilament. The left-handed twist of the beta-sheets is shown to underlie left-handed coiling of amylin protofilaments in fibrils. The model is consistent with current biophysical, biochemical and genetic data and, in particular, affords a plausible explanation for why rodent amylin does not form fibrils.  相似文献   

15.
Amyloid fibrils were produced from the full-length mouse prion protein (PrP) under solvent conditions similar to those used for the generation of synthetic prions from PrP 89-230. Analysis of the ultrastructure by atomic force microscopy revealed extremely broad polymorphism in fibrils formed under a single growth condition. Fibrils varied with respect to the number of constitutive filaments and the manner in which the filaments were assembled. PrP polymerization was found to show several peculiar features: (i) the higher-order fibrils/ribbons were formed through a highly hierarchical mechanism of assembly of lower-order fibrils/ribbons; (ii) the lateral assembly proceeded stepwise; at each step, a semi-stable fibrillar species were generated, which were then able to enter the next level of assembly; (iii) the assembly of lower into higher-order fibrils occurred predominantly in a vertical dimension via stacking of ribbons on top of each other; (iv) alternative modes of lateral association co-existed under a single growth condition; (iv) the fibrillar morphology changed even within individual fibrils, illustrating that alternative modes of filament assembly are inter-convertible and thermodynamically equivalent. The most predominant fibrillar types were classified into five groups according to their height, each of which was divided in up to three subgroups according to their width. Detailed analysis of ultrastructure revealed that the fibrils of the major subtype (height 3.61(+/-0.28)nm, width 31.1(+/-2.0)nm) were composed of two ribbons, each of which was composed of two filaments. The molecular volume calculations indicated that a single PrP molecule occupied a distance of approximately 1.2 nm within a single filament. High polymorphism in fibrils generated in vitro is reminiscent of high morphological diversity of scrapie-associated fibrils isolated from scrapie brains, suggesting that polymorphism is peculiar for polymerization of PrP regardless of whether fibrils are formed in vitro or under pathological conditions in vivo.  相似文献   

16.
Babenko V  Harada T  Yagi H  Goto Y  Kuroda R  Dzwolak W 《Chirality》2011,23(8):638-646
Hydrodynamic forces are capable of inducing structural order in dispersed solid phases, and of causing symmetry-breaking when chiral crystals precipitate from an achiral liquid phase. Until it was observed upon vortex-assisted fibrillation of insulin, such behavior had been thought to be confined to few unbiological systems. In this paper we are discussing chiroptical properties of two chiral variants of insulin amyloid, termed +ICD and -ICD, which form during the process of chiral bifurcation in vortexed solutions of aggregating insulin. As conventional measurements of circular dichroism of solid, anisotropic substances are particularly vulnerable to overlapping influences of linear birefringence and linear dichroism, we have employed complementary tools including dedicated universal chiroptical spectrophotometer to rule out such artifacts. We propose that the strong chiroptical properties of +ICD and -ICD insulin fibrils are an aspect of genuine superstructural chirality of amyloid fibrils and of powerful excitonic couplings taking place within them. A comparison of thioflavin T complexes with fibrils formed by insulin and polyglutamic acid suggests that the extrinsic Cotton effect stemming from the level of single twisted dye molecules is weaker, although diagnostically useful, and cannot account for the overall magnitude of ICD of the dye bound to ±ICD insulin amyloid.  相似文献   

17.
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer and elk, and humans. But for rabbits, studies have shown that they have a low susceptibility to be infected by prion diseases. This paper does molecular dynamics (MD) studies of rabbit NMR structures (of the wild type and its two mutants of two surface residues), in order to understand the specific mechanism of rabbit prion proteins (RaPrPC). Protein surface electrostatic charge distributions are specially focused to analyze the MD trajectories. This paper can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.  相似文献   

18.
The mechanisms of deposition and dissociation are implicated in the assembly of amyloid fibrils. To investigate the kinetics of unbinding of Abeta(16-22) monomers from preformed fibrils, we use molecular dynamics (MD) simulations and the structures for Abeta(16-22) amyloid fibrils. Consistent with experimental studies, the dissociation of Abeta(16-22) peptides involves two main stages, locked and docked, after which peptides unbind. The lifetime of the locked state, in which a peptide retains fibril-like structure and interactions, extends up to 0.5 micros under normal physiological conditions. Upon cooperative rupture of all fibril-like hydrogen bonds (HBs) with the fibril, a peptide enters a docked state. This state is populated by disordered random coil conformations and its lifetime ranges from approximately 10 to 200 ns. The docked state is stabilized by hydrophobic side chain interactions, while the contribution from HBs is small. Our simulations also suggest that the peptides located on fibril edges may form stable beta-strand conformations distinct from the fibril "bulk". We propose that such edge peptides can act as fibril caps, which impede fibril elongation. Our results indicate that the interactions between unbinding peptides constitute the molecular basis for cooperativity of peptide dissociation. The kinetics of fibril growth is reconstructed from unbinding assuming the reversibility of deposition/dissociation pathways. The relation of in silica dissociation kinetics to experimental observations is discussed.  相似文献   

19.
  1. Download : Download high-res image (329KB)
  2. Download : Download full-size image
  相似文献   

20.
Amyloid oligomers, protofibrils, and fibrils of various amyloidogenic proteins are known to induce cell death. Tetracycline prevents the formation of fibrils of Aβ peptide and other amyloidogenic proteins and decomposes mature fibrils. It was previously shown that sarcomeric cytoskeletal proteins of the titin family (protein X, protein C, and protein H) in vitro form amyloid fibrils and tetracycline decomposes them. In this work, the concentration and time dependence of the survival of polymorphonuclear leukocytes in the presence of protein X amyloid fibrils is demonstrated. It is also shown that the survival rate increases as fibrils are decomposed by tetracycline. The antibiotic itself is found to be nontoxic. The results obtained show that this approach can be used to evaluate the efficiency of drugs that prevent or rectify amyloidoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号