首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two models of binary tree growth are examined in terms of the Strahler order branching ratio (Rb) and the types of vertex produced during growth, and their inter-relationship. The sequential growth model is that described by Van Pelt and Verwer (1985,Bull. math. Biol. 47, 323–336) in which random growth occurs according to attributed probabilities on terminal or internal segments, one branch at a time. This model generates values ofRb≥3. The synchronous growth model is new and permits more than one segment to branch at a time, again randomly with attributed probabilities. This model generates values ofRb≥2 and in particular, when only terminal branching is permitted, gives 2≤Rb<3. Such a model might explain the branching in the human bronchial tree, in which 2.5≤Rb≤2.8. Our synchronous model is an alternative to the centrifugal-order-dependent sequential model of Van Pelt and Verwer.  相似文献   

2.
A group of n susceptible individuals exposed to a contagious disease isconsidered. It is assumed that at each point in time one or more susceptible individuals can contract the disease. The progress of this simple batch epidemic is modeled by a stochastic process Xn(t), t∈[0, ∞), representing the number of infectiveindividuals at time t. In this paper our analysis is restricted to simple batch epidemics with transition rates given by 2Xn(t){n ?Xn(t) +Xn(0)}]12, t∈[0, ∞), α∈(0, ∞). This class of simple batch epidemics generalizes a model used and motivated by McNeil (1972) to describe simple epidemic situations. It is shown for this class of simple batch epidemics, that Xn(t), with suitable standardization, converges in distribution as n→∞ to a normal random variable for all t∈(0, t0), and t0 is evaluated.  相似文献   

3.
Hua Chen  Kun Chen 《Genetics》2013,194(3):721-736
The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages nAn(t) follows a Poisson distribution, and as mn, n(n ? 1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.  相似文献   

4.
This paper describes a growth model for binary topological trees. The model defines the branching probability of all segments in the tree. The branching probability of a segment is formulated as a function of two variables, one indicating its type (intermediate or terminal), the other representing its order, i.e. the topological distance to the root segment. The function is determined by two parameters, namely the ratio of branching probabilities of intermediate and terminal segments and the strength of the order dependency, implemented in an exponential form. Expressions are derived for the calculation of symmetry properties of the partitions and it is indicated which part of the parameter domain results in predominantly symmetrical trees.  相似文献   

5.
After a short time interval of length δt during microbial growth, an individual cell can be found to be divided with probability Pd(tt, dead with probability Pm(tt, or alive but undivided with the probability 1 − [Pd(t) + Pm(t)]δt, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat''s properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population''s size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.  相似文献   

6.
A Yule tree is the result of a branching process with constant birth and death rates. Such a process serves as an instructive null model of many empirical systems, for instance, the evolution of species leading to a phylogenetic tree. However, often in phylogeny the only available information is the pairwise distances between a small fraction of extant species representing the leaves of the tree. In this article we study statistical properties of the pairwise distances in a Yule tree. Using a method based on a recursion, we derive an exact, analytic and compact formula for the expected number of pairs separated by a certain time distance. This number turns out to follow a increasing exponential function. This property of a Yule tree can serve as a simple test for empirical data to be well described by a Yule process. We further use this recursive method to calculate the expected number of the n-most closely related pairs of leaves and the number of cherries separated by a certain time distance. To make our results more useful for realistic scenarios, we explicitly take into account that the leaves of a tree may be incompletely sampled and derive a criterion for poorly sampled phylogenies. We show that our result can account for empirical data, using two families of birds species.  相似文献   

7.
《Mathematical biosciences》1987,83(2):157-165
Frequently there is a need to determine lengths associated with each edge of a phylogenetic tree, as these are often used as an indication of relative time intervals. Where this tree has been constructed from sequence data of r characters for n taxa, using the maximum parsimony model, an edge length can be determined from the differences between the inferred sequences of the end vertices of that edge. These inferred sequences are often not uniquely defined; a range of possible sequences are possible at a given internal vertex. In this paper we introduce an efficient [O(r×n)] algorithm which calculates the range of lengths on any edge over all the minimal labelings and significantly reduces the number of potential cases to be considered to obtain an objective measure of edge length.  相似文献   

8.
A group of n susceptible individuals exposed to a contagious disease isconsidered. It is assumed that at each point in time one or more susceptible individuals can contract the disease. The progress of this simple batch epidemic is modeled by a stochastic process Xn(t), t[0, ∞), representing the number of infectiveindividuals at time t. In this paper our analysis is restricted to simple batch epidemics with transition rates given by [α2Xn(t){nXn(t) +Xn(0)}]1/2, t[0, ∞), α(0, ∞). This class of simple batch epidemics generalizes a model used and motivated by McNeil (1972) to describe simple epidemic situations. It is shown for this class of simple batch epidemics, that Xn(t), with suitable standardization, converges in distribution as n→∞ to a normal random variable for all t(0, t0), and t0 is evaluated.  相似文献   

9.
A generalization of the well-known Levins’ model of metapopulations is studied. The generalization consists of (i) the introduction of immigration from a mainland, and (ii) assuming the dynamics is stochastic, rather than deterministic. A master equation, for the probability that n of the patches are occupied, is derived and the stationary probability P s (n), together with the mean and higher moments in the stationary state, determined. The time-dependence of the probability distribution is also studied: through a Gaussian approximation for general n when the boundary at n = 0 has little effect, and by calculating P(0, t), the probability that no patches are occupied at time t, by using a linearization procedure. These analytic calculations are supplemented by carrying out numerical solutions of the master equation and simulations of the stochastic process. The various approaches are in very good agreement with each other. This allows us to use the forms for P s 0) and P(0, t) in the linearization approximation as a basis for calculating the mean time for a metapopulation to become extinct. We give an analytical expression for the mean time to extinction derived within a mean field approach. We devise a simple method to apply our mean field approach even to complex patch networks in realistic model metapopulations. After studying two spatially extended versions of this nonspatial metapopulation model—a lattice metapopulation model and a spatially realistic model—we conclude that our analytical formula for the mean extinction time is generally applicable to those metapopulations which are really endangered, where extinction dynamics dominates over local colonization processes. The time evolution and, in particular, the scope of our analytical results, are studied by comparing these different models with the analytical approach for various values of the parameters: the rates of immigration from the mainland, the rates of colonization and extinction, and the number of patches making up the metapopulation.  相似文献   

10.
The present work deals with a Gompertz-type diffusion process, which includes in the drift term a time-dependent function C(t) representing the effect of a therapy able to modify the dynamics of the underlying process. However, in experimental studies is not immediate to deduce the functional form of C(t) from a treatment protocol. So a statistical approach is proposed in order to estimate this function when a control group and one or more treated groups are observed. In order to validate the proposed strategy a simulation study for several interesting functional forms of C(t) has been carried out. Finally, an application to infer the net effect of cisplatin and doxorubicin+cyclophosphamide in actual murine models is presented.  相似文献   

11.
We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to populated neuron activities with both long-ranged interactions, V(r) ∼ r n and short-ranged interactions. We present the results from comprehensive Monte Carlo (MC) simulations for the nonconserved Ising model with n ≥ 2, interaction range considering near and far neighbors. Our model results could represent the long-ranged neuron kinetics (n ≤ 4) in consistent with the same dynamical behaviour of short-ranged case (n ≥ 4) at far below and near criticality. We found that emergence of fast and slow kinetics of long and short ranged case could imitate the formation of connections among near and distant neurons. The calculated characteristic length scale in long-ranged interaction is found to be n independent (L(t) ∼ t 1/(n−2)), whereas short-ranged interaction follows L(t) ∼ t 1/2 law and approximately preserve universality in domain kinetics. Further, we did the comparative study of phase ordering near the critical temperature which follows different behaviours of domain ordering near and far critical temperature but follows universal scaling law.  相似文献   

12.
A bisexual multiple branching process is studied. Consider a population with respect to three genotypes in both the female and male populations and let $$X(n) = \left\langle {X_1 (n), X_2 (n), X_3 (n)} \right\rangle and Y(n) = \left\langle {Y_1 (n), Y_2 (n), Y_3 (n)} \right\rangle$$ be random vectors giving the number of females and males (respectively) of each genotype in generationn. The mating of females and males is accommodated in the model withZ ij (n) representing the number of females of theith genotype mated with a male of thejth genotype in generationn. The mating system is such that a female may be mated to only one male but a male may be mated with more than one female. By arranging the nine random variablesZ ij (n),i, j=1, 2, 3, in a 1×9, vectorZ(n) it is shown that under certain conditions there is a positive constant ? such that when ?>1 the vectorsZ n n,X n n andY n n converge almost surely asn→∞ to random vectors with fixed directions. The paper is divided into four sections. In section 1 the model is described in detail and its potential applications to population genetics are discussed. In section 2, the generating function of the transition probabilities of theZ-process are derived. Section3 is devoted to the study of the limiting behavior of the first and second moments of theZ-process, and in section4 the results of section3 are utilized to study the behavior of the random vectorsZ(n),X(n) andY(n) asn→∞.  相似文献   

13.

Background

A metagenomic sample is a set of DNA fragments, randomly extracted from multiple cells in an environment, belonging to distinct, often unknown species. Unsupervised metagenomic clustering aims at partitioning a metagenomic sample into sets that approximate taxonomic units, without using reference genomes. Since samples are large and steadily growing, space-efficient clustering algorithms are strongly needed.

Results

We design and implement a space-efficient algorithmic framework that solves a number of core primitives in unsupervised metagenomic clustering using just the bidirectional Burrows-Wheeler index and a union-find data structure on the set of reads. When run on a sample of total length n, with m reads of maximum length ? each, on an alphabet of total size σ, our algorithms take O(n(t+logσ)) time and just 2n+o(n)+O(max{? σlogn,K logm}) bits of space in addition to the index and to the union-find data structure, where K is a measure of the redundancy of the sample and t is the query time of the union-find data structure.

Conclusions

Our experimental results show that our algorithms are practical, they can exploit multiple cores by a parallel traversal of the suffix-link tree, and they are competitive both in space and in time with the state of the art.
  相似文献   

14.
The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m + n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms.  相似文献   

15.
LIGNUM: A Tree Model Based on Simple Structural Units   总被引:17,自引:2,他引:15  
The model LIGNUM treats a tree as a collection of a large numberof simple units which correspond to the organs of the tree.The model describes the three dimensional structure of the treecrown and defines the growth in terms of the metabolism takingplace in these units. The activities of physiological processescan be explicitly related to the tree structures in which theyare taking place. The time step is 1 year. The crown of the model tree consists of tree segments, branchingpoints and buds. Each pair of tree segments is separated bya branching point. The buds produce new tree segments, branchingpoints and buds. The tree segments contain wood, bark and foliage.A model tree consisting of simple elements translates convenientlyto a list structure: the computer program implementing LIGNUMtreats the tree as a collection of lists. The annual growth of the tree is driven by available photosyntheticproducts after respiration losses are accounted for. The photosyntheticrate of foliage depends on the amount of light. The amount ofphotosynthates allocated to the growth of new tree segmentsis controlled by the light conditions and the amount of foliageon the mother tree segment. In principle, the biomass relationshipsof the tree parts follow the pipe model hypothesis. The orientationof new tree segments results from the application of constantbranching angles. LIGNUM has been parametrized for young Scotspine (Pinus sylvestrisL.) trees. However, the model is generic;with a change of parameter values and minor modifications itcan be applied to other species as well. Growth model; object-oriented modelling; tree architecture; branching structure; Pinus sylvestrisL.; developmental morphology and physiology; photosynthesis; respiration  相似文献   

16.
《Journal of Asia》2014,17(3):199-205
The foraging territories of 2 subterranean termites, Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar), were simulated using a model to explore how territorial intraspecific competition changes with 4 variables characterizing the formation of territory: the number of primary tunnels, N0; the branching probability, Pbranch; the number of territories, N; and the blocking probability, Pblock. The blocking probability Pblock quantitatively describes the probability that a tunnel will be terminated when another tunnel is encountered; higher Pblock values indicate more likely termination. Higher tunnel-tunnel encounters led to denser tunnel networks. We defined a territory as a convex polygon containing a tunnel pattern and explored the effects of competition among termite colonies on territory size distribution at steady state attained after sufficient simulation time. At the beginning of the simulation, N = 10, 20,…, 100 initial territory seeds were randomly distributed within a square area. In our previous study, we introduced an interference coefficient γ to characterize territorial competition. Higher γ values imply higher limitations on network growth. We theoretically derived γ as a function of Pblock and N. In this study, we considered the constants in γ as functions of N0 and Pbranch so as to quantitatively examine the effect of tunnel structure on territorial competition. By applying statistical regression to the simulation data, we determined the generalized γ functions for both species. Under competitive conditions, territory size is most strongly affected by N0, while the outcome of territorial competition is most strongly affected by N, followed by Pblock and N0.  相似文献   

17.
Given a gene tree and a species tree, a coalescent history is a list of the branches of the species tree on which coalescences in the gene tree take place. Each pair consisting of a gene tree topology and a species tree topology has some number of possible coalescent histories. Here we show that, for each n≥7, there exist a species tree topology S and a gene tree topology GS, both with n leaves, for which the number of coalescent histories exceeds the corresponding number of coalescent histories when the species tree topology is S and the gene tree topology is also S. This result has the interpretation that the gene tree topology G discordant with the species tree topology S can be produced by the evolutionary process in more ways than can the gene tree topology that matches the species tree topology, providing further insight into the surprising combinatorial properties of gene trees that arise from their joint consideration with species trees.  相似文献   

18.
The limited proteolytic pattern of transducin,G t , and its purified subunits with chymotrypsin were analyzed and the cleavage sites on the α t subunit were identified. The α t subunit in the GTPγS bound form was cleaved into a major 38 kD fragment, whereas α t -GDP was progressively digested into 38, 23, 21, and 15 kD fragments. The βγ t subunit was not very sensitive to proteolytic digestion with chymotrypsin. The γ t subunit was not cleaved and only a small portion of β t was digested into several fragments. In order to determine which proteolytic fragment of α t still contained the carboxyl terminal region, chymotrypsinization was carried out usingG t previously32P-labeled at Cys347 by petrussis toxin-catalyzed ADP-ribosylation. The32P-label was mainly associated with the α t subunit and a 15 kD fragment. The 23 and 21 kD fragments were not32P-labeled. Analysis of amino terminal sequences of 38, 21, and 15 kD proteolytic bands allowed the identification of the major cleavage sites. Chymotrypsin had two cleavage sites in the amino terminal region of α t , at Leu15 and Leu19. Chymotrypsin removed 15–19 amino acid residues from the amino terminus of α t , generating two peptides (38 kD) which comigrates in gel electrophoresis. Chymotrypsin also cleaved at Trp207 in a conformation-dependent manner. Trp207 of α t -GTPγS was resistant to proteolysis but α t -GDP and the 38 kD fragments of α t -GDP produced the 23 and 21 kD fragments, respectively, and a 15 kD fragment containing the carboxyl terminus. This proves that the environment of Trp207 changes when GTP or GTPγS is bound, leading to its inaccessibility to chymotrypsin.  相似文献   

19.
A branching processZ(t) which behaves as Markov branching processesZ 1(t) andZ 2(t) during the free and dead times of a counter process is considered. Expression forE[Z(t)] is given.  相似文献   

20.
Electrostatic charging of an electrically insulated metal body streamlined by a plasma flow is investigated theoretically. The physical processes occurring in the vicinity of the body are considered. The electric currents resulting in the charging or discharging of the body are determined. The electric charge Q(t), electric field E(t), and potential φ(t) of a metal sphere are estimated taking into account the adopted conditions and parameters of the problem. The physical phenomena that take place in the vicinity of a charged body after Q(t) reaches a certain threshold value are discussed. The obtained values of Q(t), E(t), and φ(t) are compared with the corresponding values for a body streamlined by an atmospheric air flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号