首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
2.
We study fundamental relationships between classical and stochastic chemical kinetics for general biochemical systems with elementary reactions. Analytical and numerical investigations show that intrinsic fluctuations may qualitatively and quantitatively affect both transient and stationary system behavior. Thus, we provide a theoretical understanding of the role that intrinsic fluctuations may play in inducing biochemical function. The mean concentration dynamics are governed by differential equations that are similar to the ones of classical chemical kinetics, expressed in terms of the stoichiometry matrix and time-dependent fluxes. However, each flux is decomposed into a macroscopic term, which accounts for the effect of mean reactant concentrations on the rate of product synthesis, and a mesoscopic term, which accounts for the effect of statistical correlations among interacting reactions. We demonstrate that the ability of a model to account for phenomena induced by intrinsic fluctuations may be seriously compromised if we do not include the mesoscopic fluxes. Unfortunately, computation of fluxes and mean concentration dynamics requires intensive Monte Carlo simulation. To circumvent the computational expense, we employ a moment closure scheme, which leads to differential equations that can be solved by standard numerical techniques to obtain more accurate approximations of fluxes and mean concentration dynamics than the ones obtained with the classical approach.  相似文献   

3.
4.
Biological systems often involve chemical reactions occurring in low-molecule-number regimes, where fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are generally quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we describe a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade and a detailed model of the process of bacterial gene expression. Our results indicate that the simplified model gives an accurate representation for not only the average numbers of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

5.
Biochemical systems involve chemical reactions occurring in low-number regimes, wherein fluctuations are not negligible and thus stochastic models are required to capture the system behaviour. The resulting models are often quite large and complex, involving many reactions and species. For clarity and computational tractability, it is important to be able to simplify these systems to equivalent ones involving fewer elements. While many model simplification approaches have been developed for deterministic systems, there has been limited work on applying these approaches to stochastic modelling. Here, we propose a method that reduces the complexity of stochastic biochemical network models, and apply this method to the reduction of a mammalian signalling cascade. Our results indicate that the simplified model gives an accurate representation for not only the average number of all species, but also for the associated fluctuations and statistical parameters.  相似文献   

6.
The stochastic dynamics of a well-stirred mixture of molecular species interacting through different biochemical reactions can be accurately modelled by the chemical master equation (CME). Research in the biology and scientific computing community has concentrated mostly on the development of numerical techniques to approximate the solution of the CME via many realizations of the associated Markov jump process. The domain of exact and/or efficient methods for directly solving the CME is still widely open, which is due to its large dimension that grows exponentially with the number of molecular species involved. In this article, we present an exact solution formula of the CME for arbitrary initial conditions in the case where the underlying system is governed by monomolecular reactions. The solution can be expressed in terms of the convolution of multinomial and product Poisson distributions with time-dependent parameters evolving according to the traditional reaction-rate equations. This very structured representation allows to deduce easily many properties of the solution. The model class includes many interesting examples. For more complex reaction systems, our results can be seen as a first step towards the construction of new numerical integrators, because solutions to the monomolecular case provide promising ansatz functions for Galerkin-type methods.  相似文献   

7.
Inside individual cells, protein population counts are subject to molecular noise due to low copy numbers and the inherent probabilistic nature of biochemical processes. We investigate the effectiveness of proportional, integral and derivative (PID) based feedback controllers to suppress protein count fluctuations originating from two noise sources: bursty expression of the protein, and external disturbance in protein synthesis. Designs of biochemical reactions that function as PID controllers are discussed, with particular focus on individual controllers separately, and the corresponding closed-loop system is analyzed for stochastic controller realizations. Our results show that proportional controllers are effective in buffering protein copy number fluctuations from both noise sources, but this noise suppression comes at the cost of reduced static sensitivity of the output to the input signal. In contrast, integral feedback has no effect on the protein noise level from stochastic expression, but significantly minimizes the impact of external disturbances, particularly when the disturbance comes at low frequencies. Counter-intuitively, integral feedback is found to amplify external disturbances at intermediate frequencies. Next, we discuss the design of a coupled feedforward-feedback biochemical circuit that approximately functions as a derivate controller. Analysis using both analytical methods and Monte Carlo simulations reveals that this derivative controller effectively buffers output fluctuations from bursty stochastic expression, while maintaining the static input-output sensitivity of the open-loop system. In summary, this study provides a systematic stochastic analysis of biochemical controllers, and paves the way for their synthetic design and implementation to minimize deleterious fluctuations in gene product levels.  相似文献   

8.
It appears to be axiomatic that termolecular and higher order reactions occur relatively rarely. The basis for this judgment seems to lie in the supposition that successful 3-Body collisions of 3 interactive species of molecules cannot occur frequently enought to account for chemical or biochemical transformation. In order to provide a more complete mathematical framework than now exists for examining this hypothesis the probability of effective termolecular “δ-collisions” as a function of time is derived. This amounts to adding to the class of reactions for which stochastic models are now available the termolecular reaction. In common with the unimolecular and bimolecular cases this process is seen to satisfy the criterion of consistency-in-the-mean with respect to deterministic formulations. It is planned next to use the termolecular process and the lower order processes in computer-assistedin numero experimental studies aimed at comparing alternative mechanisms of reaction.  相似文献   

9.
10.
Apoptosis is one of the most basic biological processes. In apoptosis, tens of species are involved in many biochemical reactions with times scales of widely differing orders of magnitude. By the law of mass action, the process is mathematically described with a large and stiff system of ODEs (ordinary differential equations). The goal of this work is to simplify such systems of ODEs with the PEA (partial equilibrium approximation) method. In doing so, we propose a general framework of the PEA method together with some conditions, under which the PEA method can be justified rigorously. The main condition is the principle of detailed balance for fast reactions as a whole and the framework provides some meaningful physical insights of the full chemical kinetics. With the justified method as a tool, we simplify the Fas-signaling pathway model due to Hua et al. [6] under the empirical assumption that nine reactions therein can be well regarded as relatively fast. This paper reports our simplification, together with numerical results which confirm the reliability of both our simplified model and the empirical assumption.  相似文献   

11.
While ordinary differential equations (ODEs) form the conceptual framework for modelling many cellular processes, specific situations demand stochastic models to capture the influence of noise. The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations are a practical way to realise the CME, analytical approximations offer more insight into the influence of noise. Towards that end, the two-moment approximation (2MA) is a promising addition to the established analytical approaches including the chemical Langevin equation (CLE) and the related linear noise approximation (LNA). The 2MA approach directly tracks the mean and (co)variance which are coupled in general. This coupling is not obvious in CME and CLE and ignored by LNA and conventional ODE models. We extend previous derivations of 2MA by allowing (a) non-elementary reactions and (b) relative concentrations. Often, several elementary reactions are approximated by a single step. Furthermore, practical situations often require the use of relative concentrations. We investigate the applicability of the 2MA approach to the well-established fission yeast cell cycle model. Our analytical model reproduces the clustering of cycle times observed in experiments. This is explained through multiple resettings of M-phase promoting factor (MPF), caused by the coupling between mean and (co)variance, near the G2/M transition.  相似文献   

12.
We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and can be considerably more computationally efficient than solving the chemical master equation directly. We show the applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. Later, we obtain a reduced order model for a catalytic conversion of substrate to a product (a so-called Michaelis-Menten mechanism), and compare its dynamics with a rapid equilibrium approximation method. For this example, we highlight the savings on the computational load obtained by means of the reduced-order model. Furthermore, we revisit the substrate catalytic conversion by obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules. In such an example, we obtain an approximation of the output of a model with 5151 states by a reduced model with 16 states. Finally, we obtain a reduced-order model of the Brusselator.  相似文献   

13.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   

14.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   

15.
For a system of biochemical reactions, it is known from the work of T.G. Kurtz [J. Appl. Prob. 8, 344 (1971)] that the chemical master equation model based on a stochastic formulation approaches the deterministic model based on the Law of Mass Action in the infinite system-size limit in finite time. The two models, however, often show distinctly different steady-state behavior. To further investigate this “paradox,” a comparative study of the deterministic and stochastic models of a simple autocatalytic biochemical reaction, taken from a text by the late J. Keizer, is carried out. We compute the expected time to extinction, the true stochastic steady state, and a quasistationary probability distribution in the stochastic model. We show that the stochastic model predicts the deterministic behavior on a reasonable time scale, which can be consistently obtained from both models. The transition time to the extinction, however, grows exponentially with the system size. Mathematically, we identify that exchanging the limits of infinite system size and infinite time is problematic. The appropriate system size that can be considered sufficiently large, an important parameter in numerical computation, is also discussed.  相似文献   

16.
Stochastic simulations on a model of circadian rhythm generation   总被引:1,自引:0,他引:1  
Miura S  Shimokawa T  Nomura T 《Bio Systems》2008,93(1-2):133-140
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.  相似文献   

17.
18.
MOTIVATION: Many biochemical networks involve reactions localized on the cell membrane. This can give rise to spatial gradients of the concentration of cytosolic species. Moreover, the number of membrane molecules can be small and stochastic effects can become relevant. Pathways usually consist of a complex interaction network and are characterized by a large set of parameters. The inclusion of spatial and stochastic effects is a major challenge in developing quantitative and dynamic models of pathways. RESULTS: We have developed a particle-based spatial stochastic method (GMP) to simulate biochemical networks in space, including fluctuations from the diffusion of particles and reactions. Gradients emerging from membrane reactions can be resolved. As case studies for the GMP method we used a simple gene expression system and the phosphoenolpyruvate:glucose phosphotransferase system pathway. AVAILABILITY: The source code for the GMP method is available at http://www.science.uva.nl/research/scs/CellMath/GMP.  相似文献   

19.
Three-dimensional mechanics of eukaryotic flagella.   总被引:1,自引:1,他引:0       下载免费PDF全文
Equations are derived that account for the contribution of internal structure of cilia and flagella to motion in three dimensions according to a sliding filament model of the motile system. It is shown that for reasonable amounts of bending and twisting, the bending properties of an axoneme can be described by a linear elastic bending resistance, and approximate values for the bending and twisting resistances are computed. Expressions for the shear moments contributed by purely elastic or pinned links between filaments are also derived. It is shown that within the confines of a strict sliding filament model such internal structures cannot by themselves produce twist. Thus planar bending will occur if the internal shear force lies in a plane. Application of an external force, however, will in general produce twisting. Computer simulations of flagellar shape in response to a constant external force applied to the distal end of the axoneme are presented. It is shown that a small amount of twist may arise because of acylindrical bend resistance. Large twists, however, result when the external force is applied to an axoneme with internal shear resistant links.  相似文献   

20.
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov’s forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for computing solution statistics of high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov’s backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) to reliably estimate expectations under the CME solution for several user-defined functions of the state-vector. This method is algorithmically based on reinforcement learning and it only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the “policy function”. This allows not just the numerical approximation of various expectations for the CME solution but also of its sensitivities with respect to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号