首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 23 year data set (1981–2003 inclusive) and the spatially explicit individual-based model “Compete©” were used to investigate the implications of changing disturbance frequency on cover and taxonomic composition of a shallow coral community at Lizard Island, Australia. Near-vertical in situ stereo-photography was used to estimate rates of coral growth, mortality, recruitment and outcomes of pair-wise competitive interactions for 17 physiognomic groups of hard and soft corals. These data were used to parameterise the model, and to quantify impacts of three acute disturbance events that caused significant coral mortality: 1982—a combination of coral bleaching and Crown-of-Thorns starfish; 1990—cyclone waves; and 1996—Crown-of-Thorns starfish. Predicted coral community trajectories were not sensitive to the outcomes of competitive interactions (probably because average coral cover was only 32% and there was strong vertical separation among established corals) or to major changes in recruitment rates. The model trajectory of coral cover matched the observed trajectory accurately until the 1996 disturbance, but only if all coral mortality was confined to the 3 years of acute disturbance. Beyond that date (1997–2003), when the observed community failed to recover, it was necessary to introduce annual chronic background mortality to obtain a good match between modelled and observed coral cover. This qualitative switch in the model may reflect actual loss of resilience in the real community. Simulated over a century, an 8 year disturbance frequency most closely reproduced the mean community composition observed in the field prior to major disturbance events. Shorter intervals between disturbances led to reduced presence of the dominant hard coral groups, and a gradual increase in the slow growing, more resilient soft corals, while longer intervals (up to 16 years) resulted in monopolization by the fastest growing table coral, Acropora hyacinthus.  相似文献   

2.
 A core group of isopod crustacean genera appears to be present at many coral reef sites. Within these genera, however, species show high local endemicity. Based on the estimated percentage of endemism for the Atlantic (19% for individual sites, 90% for the tropical western Atlantic as a unit), the Indian Ocean (50%), the eastern-central Pacific (80%), and the western Pacific (40%), it is estimated that there are some 5,000 to 13,000 isopod species in the world’s coral reefs, and that some 2,000 to 6,000 of these are endemics. (At present, approximately 4,400 species of marine and 560 species of freshwater isopods have been described.) Based on the crudely estimated relative abundances of other peracaridan crustaceans in coral reefs (compared to isopods), the total diversity of reef amphipods, tanaidaceans, cumaceans, and mysidaceans is approximately 54,500 species. Accepted: 29 August 1997  相似文献   

3.
We investigated if an increase in species pool size leads to more pronounced turnover in local communities and assessed if this increase relates to stronger competition for environmental niches or to more random placement of species. We compared compositional turnover of pteridophytes (ferns and lycophytes) at 15 sites in mountain ecosystems on 13 islands in southeast Asia and Melanesia that mainly differed in the size of their species pool. Each site was sampled with 16 plots of 20 × 20 m2. Using multiple regression on distance matrices, we investigated the relationship between environmental distance and compositional turnover at different spatial extents within sites with different species pool sizes. Additionally, we tested the hypothesis that the intensity of competition increases with increasing species pool size. This was done by assessing how realized niche overlap and unevenness of communities relate to environmental distance and species pool size. With increasing species pool size, there was an increase in: a) proportional turnover in community composition, b) the importance of environmental distance for explaining turnover in community composition and c) a decrease in environmental niche overlap between species indicating an increasing importance of competition for community composition. Our results support the idea that increasing species pool size increases the competition for available environmental niches, and thereby leads to a tighter connection between environmental factors and community composition.  相似文献   

4.
An analysis of fish community responses to coral mining in the Maldives   总被引:5,自引:0,他引:5  
Synopsis Coral mining takes place on shallow reef flats at a number of localities in the Maldives, but not on the adjacent deeper reef slopes. A semi-quantitative census method for fish species abundance and biomass is described. Fish community structure is compared on mined and non-mined reef flats and their adjacent slopes using a variety of univariate, graphical/distributional and multivariate statistical techniques. In general, univariate and graphical distributional methods do not indicate significant differences between mined and non-mined localities with respect to the relative abundances and biomasses of species. Multivariate methods (both classification and ordination), however, indicate very clear-cut effects of mining on the reef flats, and also significant effects on reef slopes adjacent to mined flats. The effect was equally clear using non-quantitative (presence/absence) data. The fish species mainly responsible for the differences between mined and non-mined localities are identified, and the differences are explained in terms of the feeding biology of these species.  相似文献   

5.
The transplantation is an important method for the restoration of degraded ecosystem. However, it is unclear how the choice of species and transplantation mode affects the community dynamics during recovery from a disaster, particularly for long-lived organisms such as corals. To address this issue, we study a population dynamic model of multiple species in multiple habitats connected by larval dispersal. We first consider two species showing the trade-off relationship between growth rate and mortality and examine three restoration goals to evaluate the effectiveness of transplantation: (1) total coverage; (2) species diversity; (3) spatial heterogeneity of species composition. To promote the rapid development of total coverage, the transplantation of fast-growing species should be adopted. To maintain a high level of regional species diversity, the transplantation of slow-growing species or short-dispersal species is effective. Next, we suppose four genera of corals - Acropora, Pocillopora, Porites, and Favites - as an example of coral community in Okinawa where Pocillopora is facing to local extinction. In addition to three indexes; (4) recovery of locally endangered species is evaluated as a restoration goal. Results show that to promote the recovery of Pocillopora, the transplantation of the same species is clearly the most effective choice. In contrast, the transplantations of Acropora and Porites led to undesirable results. In summary, these results indicate that both the restoration goal and the transplanted species must be carefully selected before conducting transplantation operations.  相似文献   

6.
Three independent line intercept transect surveys on northern Red Sea reef slopes conducted in 1988/9 and 1997/8 in Egypt and from 2006-9 in Saudi Arabia were used to compare community patterns and coral size. Coral communities showed scale-dependent variability, highest at fine spatial and taxonomic scale (species-specific within and among reef patterns). At coarser scale (generic pattern across regions), patterns were more uniform (regionally consistent generic dominance on differently exposed reef slopes and at different depths). Neither fine- nor coarse-scale patterns aligned along the sampled 1700 km latitudinal gradient. Thus, a latitudinal gradient that had been described earlier from comparable datasets, separating the Red Sea into three faunistic zones, was no longer apparent. This may indicate subtle changes in species distributions. Coral size, measured as corrected average intercept of corals in transects, had decreased from 1997 to 2009, after having remained constant from 1988 to 1997. Recruitment had remained stable (~12 juvenile corals per m(2)). Size distributions had not changed significantly but large corals had declined over 20 years. Thus, data from a wide range of sites taken over two decades support claims by others that climate change is indeed beginning to show clear effects on Red Sea reefs.  相似文献   

7.
Synopsis The biological diversity and productivity of Philippine coral reefs are threatened by siltation, destructive fishing methods, coral and shell collecting and overfishing. Destructive fishing includes: the widespread, illegal use of explosives; poisons such as sodium cyanide; muro-ami and kayakas fishing; and trawling. The recent decline in catch rates threatens the livelihood of 700 000 near-shore subsistence fishermen who catch 55% of the total landings. The new government under Corazon Aquino wishes to protect the marine environment through the creation of a viable marine conservation management plan, enforcement of existing laws and through cooperation between government, non-government and international agencies to provide education and research. The Department of Agriculture, which has the authority for fisheries, has designated the International Marinelife Alliance as the lead non-government agency involved with fund raising, net-training and finding alternatives to destructive fishing methods.This essay addresses the societal relationships of village fishery to government, aid organizations, and science. Vadim Vladykov always maintained close relationship with fishermen and devoted over a year of his life to helping develop fisheries in Iran.  相似文献   

8.
The global decline of corals has created an urgent need for effective, science‐based methods to augment coral populations and restore important ecosystem functions. To meet this challenge, the field of coral restoration has rapidly evolved over the past decade. However, despite widespread efforts to outplant corals and monitor survivorship, there is a shortage of information on the effects of coral restoration on reef communities or important ecosystem functions. To fill this knowledge gap, we examined the effects of restoration on three major criteria: diversity, community structure, and ecological processes. We conducted surveys of four restored sites in the Florida Keys ranging in restoration effort (500–2,300 corals outplanted) paired with surveys of nearby, unmanipulated control sites. Coral restoration successfully enhanced coral populations, increasing coral cover 4‐fold, but manifested in limited differences in coral and fish communities. Some restored sites had higher abundance of herbivorous fish, rates of herbivory, or more juvenile‐sized corals, but these effects were limited to individual reefs. Damselfish were consistently more abundant at restored compared to control sites. Despite augmenting target coral populations, 3 years of coral restoration has not facilitated many of the positive feedbacks that help reinforce coral success. In a time of increasingly frequent disturbances, it is urgent we hasten the speed at which reefs recover important ecological processes, such as herbivory and nutrient cycling, that make reefs more resistant and resilient if we are to achieve long‐term restoration success.  相似文献   

9.
Predicting whether, how, and to what degree communities recover from disturbance remain major challenges in ecology. To predict recovery of coral communities we applied field survey data of early recovery dynamics to a multi‐species integral projection model that captured key demographic processes driving coral population trajectories, notably density‐dependent larval recruitment. After testing model predictions against field observations, we updated the model to generate projections of future coral communities. Our results indicated that communities distributed across an island landscape followed different recovery trajectories but would reassemble to pre‐disturbed levels of coral abundance, composition, and size, thus demonstrating persistence in the provision of reef habitat and other ecosystem services. Our study indicates that coral community dynamics are predictable when accounting for the interplay between species life‐history, environmental conditions, and density‐dependence. We provide a quantitative framework for evaluating the ecological processes underlying community trajectory and characteristics important to ecosystem functioning.  相似文献   

10.
We examined the effects of habitat fragmentation on the species distributions, guild membership, and community structure of old-field insects using a fine-scale experimental approach. A continuous 1-ha goldenrod field was fragmented into four treatments that varied in both patch size and degree of isolation. Each treatment was replicated four times and arranged in a Latin square design. Canopy insects in fragmented patches were sampled with sweep nets during early and late summer 1995. The species richness of insects was significantly lower in fragmented than in unfragmented treatments during July, but was similar among treatments in September. Overall community abundance showed no treatment effect during either month. We also found significant row and column effects, suggesting there was spatial heterogeneity in species richness and abundance apart from treatment effects. Differences in species richness during July were primarily due to the loss of rare species in highly fragmented plots. Overall abundance was less responsive to community change because deletions of rare species in fragmented areas were not detected in abundance analyses. Four feeding guilds showed different responses to fragmentation: the species richness of sucking herbivores and the abundance of parasitoids were significantly reduced by fragmentation but predators and chewing herbivores were largely unaffected. Analyses of a subset of individual species within guilds suggest that the greater effects of fragmentation on sucking herbivores and parasitoids may be due to the degree of habitat specificity of guild members. The effects of small-scale habitat fragmentation were therefore detectable at the level of community, guild, and individual species. Changes in species richness, guild structure and species distributions were likely due to differential effects of habitat alteration on individual movements and patch selection rather than dispersal or demographic change. Nonetheless, the selective loss of rare species, differential guild effects and changes in species occupancy that we found in this small-scale experiment are also factors that are likely to operate in fragmented habitats over broader spatial scales. Received: 11 May 1998 / Accepted: 27 September 1998  相似文献   

11.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

12.
Patch choice and population size   总被引:5,自引:0,他引:5  
The distribution of animals between feeding patches has been the subject of considerable theoretical and empirical investigation. When all animals are equal and fitness is well represented by intake rate, the ideal free distribution requires the animals to be distributed in such a way as to equalize intake rate in each feeding patch. We refer to this as the equal rates policy. This approach ignores the effect of stochasticity in the food supply on starvation. It also ignores predation. An alternative approach is based on the assumption that each animal tries to minimize its death rate. An optimal policy now involves making decisions about which patch to use on the basis of the current level of energy reserves. We investigate a simple model of population dynamics in which over-winter mortality is either derived from animals adopting the equal rates policy or the optimal state-dependent policy to decide between two feeding patches. We show that the state-dependent policy results in a larger equilibrium population size than the equal rates policy. This difference can be considerable when the foraging environment is very stochastic. Furthermore, the state-dependent policy may result in a viable equilibrium population when the equal rates policy does not. The equilibrium under the state-dependent policy may be less stable than that under the equal rates policy. We identify conditions under which the state-dependent policy results in approximately equal intake rates on the two feeding patches. Levels of mortality as a result of predation are investigated. We show that, under some circumstances, the proportion of mortality that is due to predation may decrease as the predation pressure increases.  相似文献   

13.
Accelerating coral reef restoration is a global challenge that has been attempted around the world. Previous attempts show varying levels of success at localized scales, but comparisons of cost and benefits to evaluate large‐scale reef restoration approaches are lacking. Here, we compare two large‐scale restoration approaches: the harvesting, development, and release of wild coral spawn slicks onto a target reef, with the transplantation of gravid coral colonies to provide a seed population and local source of larvae. Comparisons incorporate the best available information on demographic rates to estimate population growth, beginning at embryo production to colony maturity 4 years following deployment. Cost‐effectiveness is considered in a coarse manner. The harvesting, development, and controlled release of coral spawn slicks is anticipated to achieve large‐scale restoration of coral communities with low‐impact technology at low cost per colony. Harvesting wild spawn slicks has the potential to (1) transport billions of larvae up to thousands of kilometers that (2) are relevant to coral restoration efforts at vast geographical scales while (3) benefitting from the use of technology with extremely low impact on wild populations and (4) retaining natural genetic and species diversity needed to enhance the resilience of restored communities. Transplanting colonies is most useful from reefs designated to be impacted by infrastructural development by providing an opportunity for transfer to high value zones, from dedicated nurseries, and for brooding species. Our contribution provides insights into critical elements of both concepts, and we highlight information gaps in parameter uncertainties.  相似文献   

14.
Photosynthesis and leaf traits of five species in genus Cypripedium were compared in natural habitats and transplant nursery to develop effective strategy for cultivation and conservation. Among five species, C. guttatum had the highest photosynthetic capacity (P Nmax) in the natural habitat and nursery, while C. lichiangense the lowest. The differences in P Nmax among species were correlated with leaf N content (LNC) and leaf dry mass per unit area (LMA). After transplanting from natural habitats to nursery, the P Nmax of C. lichiangense and C. yunnanense decreased, that of C. guttatum increased, while those of C. flavum and C. tibeticum remained relatively constant. The variations in LNC and biochemical efficiency would be responsible for the differences in P Nmax between plants in natural habitats and in the nursery, but not the relative stomatal limitation. After transplanting, the Fv/Fm of C. lichiangense and C. yunnanense were declined. Meanwhile, the temperature ranges maintaining 90 % P Nmax of C. lichiangense and C. yunnanense were narrower than those of the other three species. Thus the biochemical process in five species played a major role in the differences of P Nmax after transplanting, and the widespread species had higher photosynthetic adaptability than the narrow-spread species.  相似文献   

15.
西沙群岛主要岛礁鱼类物种多样性及其群落格局   总被引:2,自引:1,他引:2  
为了解珊瑚礁海域鱼类物种多样性及其群落特征,作者2003年5月在西沙群岛7座主要岛礁(北礁、华光礁、金银岛、东岛、浪花礁、玉琢礁和永兴岛)采用底层刺网进行了调查,运用聚类分析和非度量多维标度(NMDS)等多元统计分析方法,对7个岛礁鱼类的种类组成、优势种、多样性和群落格局进行了分析.调查海域共记录鱼类146种,隶属10...  相似文献   

16.
Numerous organisms display conspicuous eyespots. These eye‐like patterns have been shown to effectively reduce predation by either deflecting strikes away from nonvital organs or by intimidating potential predators. While investigated extensively in terrestrial systems, determining what factors shape eyespot form in colorful coral reef fishes remains less well known. Using a broadscale approach we ask: How does the size of the eyespot relate to the actual eye, and at what size during ontogeny are eyespots acquired or lost? We utilized publicly available images to generate a dataset of 167 eyespot‐bearing reef fish species. We measured multiple features relating to the size of the fish, its eye, and the size of its eyespot. In reef fishes, the area of the eyespot closely matches that of the real eye; however, the eyespots “pupil” is nearly four times larger than the real pupil. Eyespots appear at about 20 mm standard length. However, there is a marked decrease in the presence of eyespots in fishes above 48 mm standard length; a size which is tightly correlated with significant decreases in documented mortality rates. Above 75–85 mm, the cost of eyespots appears to outweigh their benefit. Our results identify a “size window” for eyespots in coral reef fishes, which suggests that eyespot use is strictly body size‐dependent within this group.  相似文献   

17.
We analysed the relationship between plant species richness and productivity on first-year-old fields at two similar sites in central Europe. At both sites, a wide range of productivity levels was available resulting from different long-term fertilisation. In order to identify underlying mechanisms of the species richness–productivity relationship we included the seasonal dynamics and the number of individuals of each species in our analysis. We sampled 10 and 21 plots, respectively, at the two sites in May, June and July by harvesting all aboveground parts of vascular plants in 0.25 m2 subplots. Species richness, number of individuals of each species and community biomass as a surrogate of productivity were recorded in each sample.At one site, the relationship between species richness and biomass was significantly positive in the May and June harvest. This relationship disappeared in the July harvest due to a reduction in species richness at high productivity levels. The relations between species richness and number of individuals and between number of individuals and biomass paralleled the species richness–productivity relation but the individual number–biomass relationship remained positive until the last harvest. Between-species differences in individual number–community biomass relationships and their seasonal dynamics revealed “interspecific competitive exclusion” even though the species richness–biomass relationships were not negative or hump-shaped. At the second site, species richness was not related to productivity or to number of individuals. Our study demonstrated the importance of temporal dynamics and regional processes in understanding species richness–productivity patterns.  相似文献   

18.
Summary: The role of visual cues provided by resident wasps on resource choice by yellowjacket and paper wasp foragers was investigated. Large spring queen yellowjackets and small early season yellowjacket foragers (Vespula germanica, Vespula maculifrons, and Vespula vidua) were extracted in hexane to remove odors and posed as though feeding at petri dish feeders bearing daisy-like flower models, equipped with microcapillary feeding tubes, and containing 1:3 honey:water solution. An array of five feeders was presented to foragers at a suburban and a woodland site in Saratoga Springs, New York. The visual cues provided by resident wasps influenced resource choice by approaching social wasp foragers. Vespula germanica, an introduced yellowjacket species that tends to dominate at rich resources, was the only wasp visiting the suburban feeders. Foragers of this species preferentially fed on feeders and flowers with posed wasps and fed most often next to large wasps. Polistes fuscatus foragers at the woodland site similarly preferred to feed on occupied feeders and flowers. Vespula maculifrons and V. consobrina preferentially visited unoccupied feeders. Individual V. maculifrons, V. consobrina and V. vidua foragers that landed on occupied feeders all preferentially visited unoccupied flowers on those feeders. Vespula vidua and V. flavopilosa foragers did not demonstrate a feeder preference based on the presence/absence of posed wasps. Vespula consobrina foragers that visited occupied feeders preferred those occupied by extracted V. maculifrons queens and workers; no other wasps showed species based landing preferences.  相似文献   

19.
Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.  相似文献   

20.
淀山湖鱼类生物多样性调查样本量的优化设计   总被引:1,自引:0,他引:1  
样本量大小影响估算鱼类种群动态和鱼类群落特征的准确性和精确度.本文以淀山湖渔业资源调查为例,研究估算淀山湖鱼类群落特征所需的样本量大小.2010年7月—2011年6月研究期间每月进行一次淀山湖渔业资源调查,共捕获14科45种鱼类.利用重采样方法,估算淀山湖渔业资源调查最优调查频次和最佳站点数.结果表明: 在淀山湖渔业资源调查中,站点数和调查频次呈负相关关系;保持95%的探测率探测90%的物种,每年调查11和12次相应需要设置21和19个站点.Shannon多样性指数随着每次调查站点数的增多而变大,增长到一定程度之后逐渐趋于稳定.淀山湖鱼类群落的物种多样性调查最佳站点数为21.本文的研究方法和结果可以为其他类似研究提供借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号