首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiologic relaxation of vascular smooth muscle is induced by the cyclic guanosine monophosphate (cGMP)- dependent protein kinase Iα enzyme (cGKIα), which activates myosin phosphatase (MLCP). This activation process is thought to occur through the interaction involving both N- and C-terminal leucine zipper coiled-coil (LZCC) domains of the kinase enzyme (cGKIα) with the myosin binding subunit (MBS) of MLCP. In this review, I summarize how to define the LZCC domains in both N-terminal cGKIα(1-59) and C-terminal MBS proteins using predictive and experimental methods, how to make a rapid and accurate structure determination of a cGKIα(1-59) molecule using NMR's residual dipolar coupling (RDC) measurements, and how to indentify the existence of a weak protein interaction between N-terminal LZCC domain (cGKIα(1-59)) and a LZCC domain (MBSCT42) within the C-terminal MBS. In addition, the location and orientation of the residues in LZCC proteins can be readily visualized using a novel diagram, the so-called "wenxiang diagram", which is more advantageous than traditional helical wheel diagrams in analyzing LZCC protein structures and their action mechanisms. Using the composed wenxiang diagrams, we have characterized the interaction between cGKIα(1- 59) and another LZCC molecule (MBSCT42), and deduced that the most affected residues of these two LZCC molecules might be at the positions d, a, e and g. These studies and findings are also covered in this review. It is intriguing to see that the successful incorporation of wenxiang diagrams and NMR spectroscopy in the LZCC structural and functional studies may provide some insights into protein-protein interaction mechanisms.  相似文献   

2.
Three ZnII complexes containing bispicam ligands (bispicam = bis(2-pyridylmethyl)amine), [Zn(bispicam)2](NO3)2·2CH3OH 4A, [Zn(bispicam)(NO3)2] 4B, and [Zn(bispicam)2](OTf)26, were obtained, and their structures were determined by X-ray crystallography. Complexes of the general formulation [Zn(bispicam)2]X2 (X = Cl (1), Br (2), I (3), NO3 (4A), ClO4 (5), and OTf (6)) show fac geometric isomers (a) or enantiomers (c) and (d) according to anions. Moreover, complexes 4-6 could carry out the catalytic transesterification of a range of esters with methanol under the mild conditions. Importantly, the catalyst 4B with an unsaturated structure has shown better efficiency than the catalysts, 4A, 5, and 6, having saturated structures. To explain this reactivity difference, two different reaction mechanisms have been proposed (metal-based vs. amide N-H-based).  相似文献   

3.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

4.
Syntheses and crystal structures of tren-based amide, L1, N,N′,N″-tris[(2-amino-ethyl)-4-nitro-benzamide] and L2, N,N′,N″-tris[(2-amino-ethyl)-2-nitro-benzamide] are reported and compared with previously published tripodal amide receptor L3, N,N′,N″-tris[(2-amino-ethyl)-3-nitro-benzamide]. The crystallographic results show intramolecular and intermolecular hydrogen-bonding interactions between two arms of the tripodal receptor and two other adjacent molecules in cases of L1 and L2 whereas in addition to the above interactions an aromatic π···π stacking among tripodal arms is also observed in L3. Receptors L1, L2 and L3 having electron withdrawing -NO2 substituted (para, ortho and meta, respectively) phenyl moieties are explored toward their solution state anion binding properties and selectivity studies. The substantial changes in chemical shifts are observed for the amide protons (-NH) and aromatic protons (-CH) with F and Cl in cases of L1 and L3, and only with F for L2, indicating the participation of -NH and -CH protons in the solution state binding events. Binding constants for the above cases are calculated by 1H NMR titration upon monitoring the -NH signal. Receptor L2 shows exclusive selectivity toward F in dimethyl sulfoxide (DMSO). The structural aspects of binding I, ClO4 and SiF62− with the monoprotonated L1, L1H+·I·DMF (1), L1H+·ClO4·DMF (2) and L1H+·0.5SiF62−·H2O (3), respectively are examined crystallographically. Anion binding with multiple receptor units is observed via amide N-H···anion as well as aryl C-H···anion hydrogen-bonding interactions in all the complexes as observed in cases of previously reported crystal structures of anionic complexes of protonated L3. The aryl group having nitro functionality that contributes to solution state anion binding with the neutral receptor and solid state coordination in complexes 1-3 through CH···anion interactions is noteworthy.  相似文献   

5.
Using the ligand 1,4,5-triazanaphthalene (abbreviated as tan) in combination with Cu(II) salts, three mononuclear compounds, Cu(tan)2Cl2 (1), Cu(tan)2Br2 (3), Cu(tan)2(NO3)2 (5) and three polynuclear compounds, [Cu(tan)Cl2]n (2), [Cu(tan)Br2]n (4), [Cu(tan)(NO3)2]n (6) have been synthesized and characterized by UV-Vis, EPR, FTIR and Far-FTIR spectroscopies. The crystal structures of compounds 1, 3, 5 and 6 are reported, as well as that of the dioxane adduct of compound 4, [Cu(tan)Br2(C4H8O2)](C4H8O2) (4A).The structure of (2) was solved by X-ray powder diffraction. The coordination geometry around the Cu(II) atoms is tetrahedral for (1) and (3), square-pyramidal for (4A) and distorted octahedral for (5) and (6). Magnetic susceptibility measurements on the polynuclear compounds revealed weak antiferromagnetic interactions between the Cu(II) atoms with interaction constants (J) of J = −9.1 and −10.5 cm−1, for 4 and 6, respectively. For compound 2 two options for possible interactions were considered, with interaction constants which vary for Jrung −22.0 to −13.5 cm−1 and Jrail −19.6 to −17.0 cm−1. These figures are discussed in the light of relevant structural parameters and literature.  相似文献   

6.
Six new bromothallate(III)-containing salts with different alkyl diammonium cations have been prepared from bromide containing solutions and studied by single-crystal X-ray crystallographic analyses. The N,N′-diethyl-N,N,N′,N′-tetramethyl-1,2-ethylenediammonium, N-methyl-1,3-propanediammonium, N,N,N′,N′-tetramethyl-1,3-propanediammonium and N,N,N′,N′-tetraethyl-1,2-ethylenediammonium cations yield complexes (I, II, III and IV, respectively) with the [TlBr5]2− anionic stoichiometry. For I and II, both complexes contain the [TlBr5]2− anion. In complex II, this appears as a distorted octahedron with one long Tl?Br2′ contact of 3.632(4) Å from an adjacent anion, thus completing the hexacoordination about an otherwise distorted square pyramid. On the other hand, for III and IV, both complexes contain a tetrahedral [TlBr4] anion together with an isolated, but hydrogen-bonded, Br anion. The 1,5-hexanediammonium complex (V) contains tetrahedral [TlBr4], slightly distorted octahedral [TlBr6]3− and Br anions. The asymmetric unit of the N,N-diethyl-1,3-propanediammonium salt (VI) contains one cation and half of each of a [TlBr4] and an axially compressed octahedral [TlBr6]3− anion. Extensive hydrogen-bonded networks exist in complexes II-VI. NH?Br hydrogen bonds generally have a significant influence on the nature of the anions present in species with the formal [TlBr5] stoichiometry.  相似文献   

7.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

8.
New trinuclear iron(III) furoates with the general formula [Fe3O(α-fur)6(R-OH)3]X, where α-fur C4H3OCOO, R = CH3 (1), C2H5 (2), n-C3H7 (3), n-C4H9 (4), X = NO3 (1-4); [Fe3O(α-Fur)6(DMF)(CH3OH)2]NO3 (5); [Fe3O(α-Fur)6(H2O)(CH3OH)2]Cl (6); [Fe2MO(α-Fur)6(L)(H2O)2], where L = THF (7-9), DMF (10-12), M = Mn2+ (7, 10), Co2+ (8, 11), Ni2+ (9, 12) and [Fe2MO(α-Fur)6(3Cl-Py)3], where M = Mn2+ (13), Co2+ (14), Ni2+ (15); have been prepared and investigated by Mössbauer and IR spectroscopy. The X-ray crystal structure for the 1·2CH3OH complex indicates that it crystallizes in the monoclinic crystal system (P21/n) and has a structure typical of μ3-O-bridged trinuclear iron(III) compounds. Coordination compounds 1, 4, 7, 8 can be used as regulators of the biochemical composition of cyanobacterium Spirulina platensis biomass. The supplementation of these compounds, in concentrations exceeding 5-10 mg/l, increases the content of iron, amino acids, peptides and carbohydrates in Spirulina.  相似文献   

9.
Leaves and flowers of Artemisia gorgonum (Asteraceae) collected in Fogo, Cape Verde islands, were phytochemically investigated and resulted in isolation and characterization of three guaianolides 1, 2, 5, and a secoguainolide 4, in addition to eight known guaianolides 6-11 and two known germacranolides 12, 13. Structures were elucidated by 1D and 2D NMR experiments. Careful examination of the 13C NMR spectrum led to revision of the structure of a previously described guaianolide from 2 to 3. Most compounds exhibited mild antiplasmodial activities, ridentin (13) being the most interesting with an IC50 of 3.8 ± 0.7 μg ml−1 against Plasmodium falciparum FcB1 and weak cytotoxicity in a vero cell line (IC50 71.0 ± 3.9 μg ml−1).  相似文献   

10.
The syntheses and comparative studies of the spectral, voltammetry and spectroelectrochemical properties of new manganese phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral positions (complex 3b) are reported. Solution electrochemistry of complex 3a showed quasi-reversible metal-based (MnIIIPc−2/MnIIPc2, E1/2 = −0.07 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.78 V vs. Ag|AgCl) reductions, but no ring-based oxidation. However, complex 3b showed weak irreversible ring-oxidation signal (Ep = +0.86 vs. Ag|AgCl). Reversible metal-based (MnIIIPc−2/MnIIPc−2, E1/2 = −0.04 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.68 V vs. Ag|AgCl) reductions were also observed for complex 3b. Spectroelectrochemistry was used to confirm these processes. Reduction process involving the metal (MnIIIPc−2/MnIIPc−2) was associated with the formation of manganese μ-oxo complex in complex 3a.  相似文献   

11.
The linkage isomers, (OC)5M[κ1-PPh2 CH2CH(PPh2)2] 1 and (OC)5M[κ1-PPh2 CH(PPh2)CH2PPh2] 2 (M = Cr, Mo and W) exist in equilibrium at room temperature. Equilibrium constants for 1Cr ? 2Cr, 1Mo ? 2Mo and 1W ? 2W at 25 °C in CDCl3 are 2.61, 5.0 and 4.74, respectively. Enthalpy favors the forward reaction (ΔH = −13.5, −12 and −12.2 kJ mol−1, respectively) while entropy favors the reverse reaction (ΔS = −37.6, −28 and −28.2 J K−1 mol−1, respectively). Isomerization is much faster than chelation with 1Mo ? 2Mo ? 1W ? 2W > 1Cr ? 2Cr. Enthalpies of activation for 1Cr ? 2Cr and 1W ? 2W are 119.0 and 92.6 kJ mol−1, respectively, and entropies of activation are 1.4 and −28.2 J K−1 mol−1, respectively. Isomerization is 104 times faster for these complexes than for (OC)5M[κ1-PPh2CH2CH2P(p-tolyl)2]. A novel mechanism is proposed to account for the rate differences. The X-ray crystal structure of 2W shows that the phosphorus atom of the short phosphine arm lies very close to a carbon atom of the W(CO)4 equatorial plane (3.40 Å) which could allow “through-space” coupling, accounting in part for the observation of long-range JPC and JPW coupling. The X-ray structure of (OC)5W[κ1-PPh2 C(CH2)PPh2] 5W has been determined for comparison to 2W.  相似文献   

12.
A series of new ruthenium(II) carbonyl chloride complexes with pyridine-functionalised N-heterocyclic carbenes [Ru(Py-NHC)(CO)2Cl2], [Py-NHC = 3-methyl-1-(2-pyridyl)imidazol-2-ylidene, 1 (1a and 1b); 3-methyl-1-(2-picoyl)imidazol-2-ylidene, 2 (2a and 2b); 3-methyl-1-(2-pyridyl)benzimidazolin-2-ylidene, 3 (3b); 3-methyl-1-(2-picoyl)benzimidazolin-2-ylidene, 4 (4a and 4b); 1-methyl-4-(2-pyridyl)-1,2,4-triazoline-5-ylidene, 5 (5a and 5b)] have been prepared by transmetallation from the corresponding silver carbene complexes and characterized by NMR, IR spectroscopy and elemental analysis. In these complexes with bidentate Py-NHC ligands, one CO ligand is trans to the Py ligand. In 1a, 2a, 4a, and 5a, the NHC ligand is trans to the other CO ligand, thus leaving the two Cl ligands trans to each other. In 1b, 2b, 3b, 4b, and 5b, the NHC ligands are trans to one Cl ligand, and the two Cl ligands are cis to each other. The structures for 1b, 2b, 3b and 4b have been determined by single-crystal X-ray diffraction. These complexes are efficient catalysts in the transfer hydrogenation of acetophenone and their catalytic activities are found to be influenced by electronic effect of the N-heterocyclic carbene ligands.  相似文献   

13.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

14.
Using a racemic mixture of the tridentate ligand, (((2-pyridyl)ethylamine)methyl)phenolate ion (L) and , NCS, (NC)2N, OAc as coligands, complexes having the formula [Ni(L)(N3)] (1), [Ni(L)(NCS)]2 (2), [Ni2(L)2(OAc)(N(CN)2)]n (3) were prepared and structurally characterized. In 1, Ni(II) has a square planar geometry and phenolate oxygen is involved in dipolar ?Nδ+ interaction with electrophilic central nitrogen atom of coordinated azide ion. Complex 2 is dimeric in nature and nickel(II) is penta-coordinated. Compounds 1 and 2 exist as centrosymmetric dimers made up of a pair of R and S enantiomers of L. In 3, an acetate and phenoxo bridged dinickel complex is present which is further linked to a zig-zag coordination polymer by the dicyanamide ion. In a given chain of 3, both L have same enantiomeric form and either RR or SS dimers are repeated along the chain. The magnetic properties are described.  相似文献   

15.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

16.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

17.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

18.
Six novel Cd(II) coordination polymers based on 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl (btmb), namely, [Cd(btmb)2I2]n (1), [Cd(btmb)I2]n (2), {[Cd(btmb)2(NO3)2]·H2O}n (3), {[Cd(btmb)2(SCN)2]·3H2O}n (4), {[Cd(btmb)(CH3COO)2(H2O)]·CH3CN}n (5) and [Cd(btmb)Cl2(H2O)]n (6) have been synthesized by the reactions of btmb with Cd(II) salts in the presence of different anions (I, , NCS, CH3COO or Cl) under appropriate reaction conditions. The assemblies of btmb with CdI2 afford two different structures: two-dimensional (2D) rhombohedral grid layer network structure 1 and 2D layer structure 2 involved with one-dimensional (1D) linear cadmium chains. Treatment of btmb with Cd(NO3)2·4H2O gives rise to a 2D grid network structure 3 which is similar to 1. When the I or NO3 anions were replaced by NCS, CH3COO or Cl, different 1D coordination polymers 4-6 were obtained, respectively. Polymer 4 displays a 1D double-chain structure, while both polymers 5 and 6 show 1D zigzag chain structures. In addition, the luminescence measurements reveal that polymers 1-6 exhibit different fluorescent emissions in the solid-state at room temperature, which can be attributed to the various coordination environments of Cd(II), solvent molecules and different packing interactions in these polymers.  相似文献   

19.
The complexation of Al3+, Zn2+, Cd2+ and Pb2+ by the 3-hydroxyflavones: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-one (H1) and 3-hydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one (H2), and by the 3-methoxythioflavone: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-thione (H3) have been studied spectrophotometrically and fluorimetrically to determine the corresponding complexation constants, Ksp and Kfl, in 5:95 water:ethanol (v/v) solution for which [HClO4] was either 10−2 or 10−5 mol dm−3 and I = 0.10 mol dm−3 (NaClO4) at 298.2 K. Complexation occurs dominantly through the deprotonated ligand for [Al(1)]2+ and [Al(2)]2+ for which log Ksp = 4.51 and 4.73, respectively, in 10−2 mol dm−3 HClO4 and 4.21 and 4.61 in 10−5 mol dm−3 HClO4. For Pb2+ complexation by H1, H2 and H3 is characterized by log Ksp = 2.20, 2.57 and 3.22, respectively, in 10−2 mol dm−3 HClO4 and 4.70, 5.38 and 5.74 in 10−5 mol dm−3 HClO4. Equilibrium mixtures of [Pb(H1)]2+ and [Pb1]+, [Pb(H2)]2+ and [Pb2]+, and [Pb(H3)]2+ and [Pb3]+ appear to be formed. Complexation of Zn2+ and Cd2+ by all three ligands was only detected in 10−5 mol dm−3 HClO4. For Zn2+ complexation by H1, H2 and H3 log Ksp = 3.22, 3.74 and 4.46 and for Cd2+ the corresponding values are 2.39, 2.40 and 3.72 for Cd2+. Only [Al1]2+ and [Al2]2+ show significant fluorescence and are characterized by log Kfl = 6.30 and 7.49 in 10−2 mol dm−3 HClO4.  相似文献   

20.
A novel polymerizable organosilyl-modified Dawson-type polyoxometalate (POM) [α2-P2W17O61{CH2C(CH3)COO(CH2)3Si}2O]6− (1) was synthesized as both salt (Me2NH2-1) and H+ form (H-1). They were characterized with complete elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR, (1H, 13C, 29Si, 31P and 183W) NMR and n-butylamine titration method. H-1 was immobilized to a polymer network through free radical copolymerization with methyl methacrylate (MMA). The acidities of H-1 and hybrid copolymer (H-1-co-MMA) were evaluated using the Hammett indicators (dicinnamalacetone and benzalacetophenone; pKa values of the protonated indicators are −3.0 and −5.6, respectively). The pKa value of H-1 was estimated as that between −3.0 and −5.6 in CH3CN solution and H-1 was immobilized in H-1-co-MMA with the original acidity being retained. Glass transition point (Tg) and molecular weight distribution of H-1-co-MMA were affected by the used amount of H-1 because of the cross-linking effect of H-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号