首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual-based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model to the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented landscape. We derive stochastic patch occupancy model (SPOM) approximations for the IBMs assuming pure demographic stochasticity, uncorrelated environmental stochasticity, or completely correlated environmental stochasticity in local dynamics. Using realistic parameter values for the Glanville fritillary, we show that the SPOMs mimic the behavior of the IBMs well. The SPOMs derived from IBMs have parameters that relate directly to the life history and behavior of individuals, which is an advantage for model interpretation and parameter estimation. The modeling approach that we describe here provides a unified framework for patchy populations with much movements among habitat patches and classic metapopulations with infrequent movements.  相似文献   

2.
Conservation objectives for non‐breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence‐based decisions. Our conceptual framework is individual‐based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual‐based models (IBMs) that follow the fitness‐maximising decisions of individuals and predict population‐level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density‐dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.  相似文献   

3.
4.
5.
The modelling of contact processes between hosts is of key importance in epidemiology. Current studies have mainly focused on networks with stationary structures, although we know these structures to be dynamic with continuous appearance and disappearance of links over time. In the case of moving individuals, the contact network cannot be established. Individual-based models (IBMs) can simulate the individual behaviours involved in the contact process. However, with very large populations, they can be hard to simulate and study due to the computational costs. We use the moment approximation (MA) method to approximate a stochastic IBM with an aggregated deterministic model. We illustrate the method with an application in animal epidemiology: the spread of the highly pathogenic virus H5N1 of avian influenza in a poultry flock. The MA method is explained in a didactic way so that it can be reused and extended. We compare the simulation results of three models: 1. an IBM, 2. a MA, and 3. a mean-field (MF). The results show a close agreement between the MA model and the IBM. They highlight the importance for the models to capture the displacement behaviours and the contact processes in the study of disease spread. We also illustrate an original way of using different models of the same system to learn more about the system itself, and about the representation we build of it.  相似文献   

6.
We introduce a dengue model (SEIR) where the human individuals are treated on an individual basis (IBM) while the mosquito population, produced by an independent model, is treated by compartments (SEI). We study the spread of epidemics by the sole action of the mosquito. Exponential, deterministic and experimental distributions for the (human) exposed period are considered in two weather scenarios, one corresponding to temperate climate and the other to tropical climate. Virus circulation, final epidemic size and duration of outbreaks are considered showing that the results present little sensitivity to the statistics followed by the exposed period provided the median of the distributions are in coincidence. Only the time between an introduced (imported) case and the appearance of the first symptomatic secondary case is sensitive to this distribution. We finally show that the IBM model introduced is precisely a realization of a compartmental model, and that at least in this case, the choice between compartmental models or IBM is only a matter of convenience.  相似文献   

7.
In many cell types, the inositol trisphosphate receptor (IPR) is one of the important components that control intracellular calcium dynamics, and an understanding of this receptor (which is also a calcium channel) is necessary for an understanding of calcium oscillations and waves. Recent advances in experimental techniques now allow for the measurement of single-channel activity of the IPR in conditions similar to its native environment, and these data can be used to determine the rate constants in Markov models of the IPR. We illustrate a parameter estimation method based on Markov chain Monte Carlo, which can be used to fit directly to single-channel data, and determining, as an intrinsic part of the fit, the times at which the IPR is opening and closing. We show, using simulated data, the most complex Markov model that can be unambiguously determined from steady-state data and show that non-steady-state data is required to determine more complex models.  相似文献   

8.
ABSTRACT

Individual based models (IBMs) are up-to-date tools both in research and educational areas. Here we introduce an IBM built on NetLogo platform that simulates a top-down trophic cascade controlled by the pressure exerted by two model predators (web-building spiders and ground runner spiders) on a model pest (the olive fruit fly) within a hypothetical agricultural landscape (the olive crop). EcoPred is an IBM that aims to be an educational tool that can help teachers to explain concepts related to ecology in a modern, enjoyable and comprehensive way. EcoPred reflects the changes on a fly population within a simulated olive crop according to (1) the mortality rate caused by the predation of two spider species and energy loss, (2) the energy gain by feeding on flowers and (3) the reproduction rate in olive trees. The model was tested with 26 students achieving very good results in terms of acceptance and interest on the learning method. EcoPred can be used for educational purposes with 16 year old students and older to explain ecological concepts such as trophic level, species interactions, limiting factor and biological control in an interactive way simultaneously introducing students to biology oriented programming languages.  相似文献   

9.
Today, we know that demographic rates can be greatly influenced by differences among individuals in their capacity to survive and reproduce. These intrinsic differences, commonly known as individual heterogeneity, can rarely be measured and are thus treated as latent variables when modeling mortality. Finite mixture models and mixed effects models have been proposed as alternative approaches for inference on individual heterogeneity in mortality. However, in general models assume that individual heterogeneity influences mortality proportionally, which limits the possibility to test hypotheses on the effect of individual heterogeneity on other aspects of mortality such as ageing rates. Here, we propose a Bayesian model that builds upon the mixture models previously developed, but that facilitates making inferences on the effect of individual heterogeneity on mortality parameters other than the baseline mortality. As an illustration, we apply this framework to the Gompertz–Makeham mortality model, commonly used in human and wildlife studies, by assuming that the Gompertz rate parameter is affected by individual heterogeneity. We provide results of a simulation study where we show that the model appropriately retrieves the parameters used for simulation, even for low variances in the heterogeneous parameter. We then apply the model to a dataset on captive chimpanzees and on a cohort life table of 1751 Swedish men, and show how model selection against a null model (i.e., without heterogeneity) can be carried out.  相似文献   

10.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

11.
Even though individual-based models (IBMs) have become very popular in ecology during the last decade, there have been few attempts to implement behavioural aspects in IBMs. This is partly due to lack of appropriate techniques. Behavioural and life history aspects can be implemented in IBMs through adaptive models based on genetic algorithms and neural networks (individual-based-neural network-genetic algorithm, ING). To investigate the precision of the adaptation process, we present three cases where solutions can be found by optimisation. These cases include a state-dependent patch selection problem, a simple game between predators and prey, and a more complex vertical migration scenario for a planktivorous fish. In all cases, the optimal solution is calculated and compared with the solution achieved using ING. The results show that the ING method finds optimal or close to optimal solutions for the problems presented. In addition it has a wider range of potential application areas than conventional techniques in behavioural modelling. Especially the method is well suited for complex problems where other methods fail to provide answers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A popular approach to detecting positive selection is to estimate the parameters of a probabilistic model of codon evolution and perform inference based on its maximum likelihood parameter values. This approach has been evaluated intensively in a number of simulation studies and found to be robust when the available data set is large. However, uncertainties in the estimated parameter values can lead to errors in the inference, especially when the data set is small or there is insufficient divergence between the sequences. We introduce a Bayesian model comparison approach to infer whether the sequence as a whole contains sites at which the rate of nonsynonymous substitution is greater than the rate of synonymous substitution. We incorporated this probabilistic model comparison into a Bayesian approach to site-specific inference of positive selection. Using simulated sequences, we compared this approach to the commonly used empirical Bayes approach and investigated the effect of tree length on the performance of both methods. We found that the Bayesian approach outperforms the empirical Bayes method when the amount of sequence divergence is small and is less prone to false-positive inference when the sequences are saturated, while the results are indistinguishable for intermediate levels of sequence divergence.  相似文献   

13.
We propose methods for Bayesian inference for a new class of semiparametric survival models with a cure fraction. Specifically, we propose a semiparametric cure rate model with a smoothing parameter that controls the degree of parametricity in the right tail of the survival distribution. We show that such a parameter is crucial for these kinds of models and can have an impact on the posterior estimates. Several novel properties of the proposed model are derived. In addition, we propose a class of improper noninformative priors based on this model and examine the properties of the implied posterior. Also, a class of informative priors based on historical data is proposed and its theoretical properties are investigated. A case study involving a melanoma clinical trial is discussed in detail to demonstrate the proposed methodology.  相似文献   

14.
Spatially-explicit simulation models can help state and local regulatory agencies to predict both the rate and direction of the spread of an invasive species from a set of surveyed locations. Such models can be used to develop successful early detection, quarantine, or eradication plans based on the predicted areas of infestation. Individual-based models (IBMs) are often used to replicate the dynamics of complex systems and are both able to incorporate individual differences and local interactions among organisms, as well as spatial details. In this work, we introduce a new stochastic lattice-based model for simulating the spread of invasive termites over a landscape and compare it to a recently published stochastic individual-based approach, based on the same ecological parameters, with the goal of improving its computational efficiency. The two modeling frameworks were tested over a homogeneous landscape with randomly located sources of infestation. Further, the setting of a case-study of an invasive termite, Nasutitermes corniger (Motschulsky), was used to simulate the spread of the species in Dania Beach, Florida, U.S.A., and the results of the proposed model were compared with an earlier application of the IBM over the same area. The results show that the extent of the infested areas predicted by the new lattice-based model is similar, thus comparable, to the individual-based model while improving the computation time significantly. The simulation presented in this work could be used by the regulatory authorities to draw one or more areas of intervention instead of wasting resources by randomly surveying unknown perimeters.  相似文献   

15.
Guedj J  Thiébaut R  Commenges D 《Biometrics》2007,63(4):1198-1206
The study of dynamical models of HIV infection, based on a system of nonlinear ordinary differential equations (ODE), has considerably improved the knowledge of its pathogenesis. While the first models used simplified ODE systems and analyzed each patient separately, recent works dealt with inference in non-simplified models borrowing strength from the whole sample. The complexity of these models leads to great difficulties for inference and only the Bayesian approach has been attempted by now. We propose a full likelihood inference, adapting a Newton-like algorithm for these particular models. We consider a relatively complex ODE model for HIV infection and a model for the observations including the issue of detection limits. We apply this approach to the analysis of a clinical trial of antiretroviral therapy (ALBI ANRS 070) and we show that the whole algorithm works well in a simulation study.  相似文献   

16.
In this article, we propose a method for analyzing the spatial variations in the range expansion of the pine processionary moth (PPM), an invasive species in France. Based on binary measurements - the presence or absence of PPM nests - the proposed method allows us to infer the local effect of the environment on PPM population expansion. This effect is estimated at each position x using a parameter F(x) that corresponds to the local PPM fitness. The data type and the two stage PPM life cycle make estimating this parameter difficult. To overcome these difficulties we adopt a mechanistic-statistical approach that combines a statistical model for the observation process with a hierarchical,reaction-diffusion based mechanistic model for the expansion process. Bayesian inference of the parameter F(x) reveals that PPM fitness is spatially heterogeneous and highlights the existence of large regions associated with lower fitness. The factors underlying this lower fitness are yet to be determined.  相似文献   

17.
Mitochondria are organelles with a complex architecture. They are bounded by an envelope consisting of the outer membrane and the inner boundary membrane (IBM). Narrow crista junctions (CJs) link the IBM to the cristae. OMs and IBMs are firmly connected by contact sites (CS). The molecular nature of the CS remained unknown. Using quantitative high-resolution mass spectrometry we identified a novel complex, the mitochondrial contact site (MICOS) complex, formed by a set of mitochondrial membrane proteins that is essential for the formation of CS. MICOS is preferentially located at the CJs. Upon loss of one of the MICOS subunits, CJs disappear completely or are impaired, showing that CJs require the presence of CS to form a superstructure that links the IBM to the cristae. Loss of MICOS subunits results in loss of respiratory competence and altered inheritance of mitochondrial DNA.  相似文献   

18.
Doubly robust estimation in missing data and causal inference models   总被引:3,自引:0,他引:3  
Bang H  Robins JM 《Biometrics》2005,61(4):962-973
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented) inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.  相似文献   

19.
In community-intervention trials, communities, rather than individuals, are randomized to experimental arms. Generalized linear mixed models offer a flexible parametric framework for the evaluation of community-intervention trials, incorporating both systematic and random variations at the community and individual levels. We propose here a simple two-stage inference method for generalized linear mixed models, specifically tailored to the analysis of community-intervention trials. In the first stage, community-specific random effects are estimated from individual-level data, adjusting for the effects of individual-level covariates. This reduces the model approximately to a linear mixed model with the unit of analysis being community. Because the number of communities is typically small in community-intervention studies, we apply the small-sample inference method of Kenward and Roger (1997, Biometrics53, 983-997) to the linear mixed model of second stage. We show by simulation that, under typical settings of community-intervention studies, the proposed approach improves the inference on the intervention-effect parameter uniformly over both the linearized mixed-effect approach and the adaptive Gaussian quadrature approach for generalized linear mixed models. This work is motivated by a series of large randomized trials that test community interventions for promoting cancer preventive lifestyles and behaviors.  相似文献   

20.
Multivariate meta-analysis is gaining prominence in evidence synthesis research because it enables simultaneous synthesis of multiple correlated outcome data, and random-effects models have generally been used for addressing between-studies heterogeneities. However, coverage probabilities of confidence regions or intervals for standard inference methods for random-effects models (eg, restricted maximum likelihood estimation) cannot retain their nominal confidence levels in general, especially when the number of synthesized studies is small because their validities depend on large sample approximations. In this article, we provide permutation-based inference methods that enable exact joint inferences for average outcome measures without large sample approximations. We also provide accurate marginal inference methods under general settings of multivariate meta-analyses. We propose effective approaches for permutation inferences using optimal weighting based on the efficient score statistic. The effectiveness of the proposed methods is illustrated via applications to bivariate meta-analyses of diagnostic accuracy studies for airway eosinophilia in asthma and a network meta-analysis for antihypertensive drugs on incident diabetes, as well as through simulation experiments. In numerical evaluations performed via simulations, our methods generally provided accurate confidence regions or intervals under a broad range of settings, whereas the current standard inference methods exhibited serious undercoverage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号