首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement (C) system is a potent innate immune defence system against parasites. We have recently characterised and expressed OmCI, a 16 kDa protein derived from the soft tick Ornithodoros moubata that specifically binds C5, thereby preventing C activation. The structure of recombinant OmCI determined at 1.9 A resolution confirms a lipocalin fold and reveals that the protein binds a fatty acid derivative that we have identified by mass spectrometry as ricinoleic acid. We propose that OmCI could sequester one of the fatty acid-derived inflammatory modulators from the host plasma, thereby interfering with the host inflammatory response to the tick bite. Mapping of sequence differences between OmCI and other tick lipocalins with different functions, combined with biochemical investigations of OmCI activity, supports the hypothesis that OmCI acts by preventing interaction with the C5 convertase, rather than by blocking the C5a cleavage site.  相似文献   

2.
alpha t alpha is a 38-residue peptide designed to adopt a helical hairpin conformation in solution (Fezoui Y, Weaver DL Osterhout JJ, 1995, Protein Sci 4:286-295). A previous study of the carboxylate form of alpha t alpha by CD and two-dimensional NMR indicated that the peptide was highly helical and that the helices associated in approximately the intended orientation (Fezoui Y, Weaver DL, Osterhout JJ, 1994, Proc Natl Acad Sci USA 91:3675-3679). Here, the solution structure of alpha t alpha as determined by two-dimensional NMR is reported. A total of 266 experimentally derived distance restraints and 20 dihedral angle restraints derived from J-couplings were used. One-hundred initial structures were generated by distance geometry and refined by dynamical simulated annealing. Twenty-three of the lowest-energy structures consistent with the experimental restraints were analyzed. The results presented here show that alpha t alpha is comprised of two associating helices connected by a turn region.  相似文献   

3.
Stromelysin, a representative matrix metalloproteinase and target of drug development efforts, plays a prominent role in the pathological proteolysis associated with arthritis and secondarily in that of cancer metastasis and invasion. To provide a structural template to aid the development of therapeutic inhibitors, we have determined a medium-resolution structure of a 20-kDa complex of human stromelysin's catalytic domain with a hydrophobic peptidic inhibitor using multinuclear, multidimensional NMR spectroscopy. This domain of this zinc hydrolase contains a mixed beta-sheet comprising one antiparallel strand and four parallel strands, three helices, and a methionine-containing turn near the catalytic center. The ensemble of 20 structures was calculated using, on average, 8 interresidue NOE restraints per residue for the 166-residue protein fragment complexed with a 4-residue substrate analogue. The mean RMS deviation (RMSD) to the average structure for backbone heavy atoms is 0.91 A and for all heavy atoms is 1.42 A. The structure has good stereochemical properties, including its backbone torsion angles. The beta-sheet and alpha-helices of the catalytic domains of human stromelysin (NMR model) and human fibroblast collagenase (X-ray crystallographic model of Lovejoy B et al., 1994b, Biochemistry 33:8207-8217) superimpose well, having a pairwise RMSD for backbone heavy atoms of 2.28 A when three loop segments are disregarded. The hydroxamate-substituted inhibitor binds across the hydrophobic active site of stromelysin in an extended conformation. The first hydrophobic side chain is deeply buried in the principal S'1 subsite, the second hydrophobic side chain is located on the opposite side of the inhibitor backbone in the hydrophobic S'2 surface subsite, and a third hydrophobic side chain (P'3) lies at the surface.  相似文献   

4.
Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM‐Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA‐damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP‐competitive inhibitor, as the electron density clearly reveals that it occupies the ATP‐binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.  相似文献   

5.
The receptor binding surface of human follicle-stimulating hormone (hFSH) is mimicked by synthetic peptides corresponding to the hFSH- chain amino acid sequences 33–53 [Santa-Coloma, T. A., Dattatreyamurty, D., and Reichert, L. E., Jr. (1990),Biochemistry 29, 1194–1200], 81–95 [Santa-Coloma, T. A., and Reichert, L. E., Jr. (1990),J. Biol. Chem. 265, 5037–5042], and the combined sequence (33–53)–(81–95) [Santa-Coloma, T. A., Crabb, J. W., and Reichert, L. E., Jr. (1991),Mol. Cell. Endocrinol. 78, 197–204]. These peptides have been shown to inhibit binding of hFSH to its receptor. Circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy were used to determine the structure of the first peptide in this series, the 21 amino acid peptide hFSH--(33–53), H2N-YTRDLVYKDPARPKIQKTCTF-COOH. Analysis of CD data indicated the presence of approximately equal amounts of antiparallel -pleated sheet, turns including a -turn, other structures, and a small amount ofa-helix. The major characteristics of the structure were found to be relatively stable at acidicpH and the predominant effect of increased solvent polarity was a small increase ina-helical content. One- and two-dimensional NMR techniques were used to obtain full proton and carbon signal assignments in aqueous solution atpH 3.1. Analysis of NMR results confirmed the presence of the structural features revealed by CD analysis and provided a detailed picture of the secondary structural elements and global folding pattern in hFSH--(33–53). These features included an antiparallel -sheet (residues 38–51 and 46–48), turns within residues 41–46, and 50–52 (a -turn) and a small N-terminal helical region comprised of amino acids 34–36. One of the turns is facilitated by prolines 42 and 45. Proline-45 was constrained to thetrans conformation, whereas proline-42 favored thetrans conformer (70%) over thecis (30%). Two resonances were observed for the single alanine residue (A-43) sequentially proximal to P-42, but the rest of the structure was minimally affected by the isomerization at proline-42. The major population of molecules, containingtrans-42 andtrans-45 prolines, presented 120 NOEs. Distance geometry calculations with 140 distance constraints and energy minimization refinements were used to derive a moderately well-defined model of the peptide's structure. The hFSH--(33–53) structure has a highly polar surface composed of six cationic amino acid (arginie-35, lysine-40, arginine-44, lysine-46, glutamine-48, and lysine-49) and two anionic residues (aspartate-36 and aspartic acid-41). A hydrophobic region in the structure is composed of residues in the antiparallel -sheet and -turn which fold to produce a distorted hairpin. The structure of this domain, together with the protruding and positively charged region in the vicinity of residues 42–45, may mimic the surface of hFSH that binds to the receptor.Abreviations used: hFSH, human follicle-stimulating hormone; PB, 25 mM Na2KPO4, 25 mM KH2PO4, and 5 mM Mg Cl2; CD, circular dichroism spectrapolarimetry; NMR, nuclear magnetic resonance spectrometry; COSY, homonuclear correlated spectroscopy; NOESY, 2D nuclear Overhauser effect spectroscopy; HOHAHA, homonuclear Hartman-Han coherence transfer; HMQCHY, reverse-detected heteronuclear multiple shift correlation, one bond; HMBC, reverse-detected heteronuclear multiple bond correlation; S/N, signal to noise ratio; TFE, trifluoroethanol.Dr. Santa-Coloma is on leave of absence from the National Research Council of Argentina (CONICET).  相似文献   

6.
Acid-sensing ion channels (ASIC) are proton-gated sodium channels that have been implicated in pain transduction associated with acidosis in inflamed or ischemic tissues. APETx2, a peptide toxin effector of ASIC3, has been purified from an extract of the sea anemone Anthopleura elegantissima. APETx2 is a 42-amino-acid peptide cross-linked by three disulfide bridges. Its three-dimensional structure, as determined by conventional two-dimensional 1H-NMR, consists of a compact disulfide-bonded core composed of a four-stranded beta-sheet. It belongs to the disulfide-rich all-beta structural family encompassing peptide toxins commonly found in animal venoms. The structural characteristics of APETx2 are compared with that of PcTx1, another effector of ASIC channels but specific to the ASIC1a subtype and to APETx1, a toxin structurally related to APETx2, which targets the HERG potassium channel. Structural comparisons, coupled with the analysis of the electrostatic characteristics of these various ion channel effectors, led us to suggest a putative channel interaction surface for APETx2, encompassing its N terminus together with the type I-beta turn connecting beta-strands III and IV. This basic surface (R31 and R17) is also rich in aromatic residues (Y16, F15, Y32, and F33). An additional region made of the type II'-beta turn connecting beta-strands I and II could also play a role in the specificity observed for these different ion effectors.  相似文献   

7.
Abstract

The single-crystal structure of anagliptin, N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide, was determined. Two independent molecules were held together by intermolecular hydrogen bonds, and the absolute configuration of the 2-cyanopyrrolidine ring delivered from l-prolinamide was confirmed to be S. The interactions of anagliptin with DPP-4 were clarified by the co-crystal structure solved at 2.85?Å resolution. Based on the structure determined by X-ray crystallography, the potency and selectivity of anagliptin were discussed, and an SAR study using anagliptin derivatives was performed.  相似文献   

8.
The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.  相似文献   

9.
The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure.  相似文献   

10.
Uperolein, a physalaemin-like endecapeptide, has been shown to be selective for Neurokinin 1 receptor. As a first step towards understanding the structure-activity relationship, we report the membrane-induced structure of Uperolein with the aid of circular dichroism and 2D (1)H NMR spectroscopy. Sequence-specific resonance assignments of protons have been made using correlation spectroscopy (TOCSY, DQF-COSY) and NOESY spectroscopy. The interproton distance constraints and dihedral angle constraints have been utilized to generate a family of structures using torsion angle molecular dynamics within program DYANA. The conformational range of the peptide revealed by NMR and CD studies has been analysed in terms of characteristic secondary features. Analysis of NMR data indicates that the global fold of Uperolein can be explained in terms of equilibrium between 3(10)-helix and alpha-helix from residues 5 to 11. An extended highly flexible N-terminus displays some degree of order and a possible turn structure. A comparison between the structures of Uperolein and Substance P, a prototype and endogenous Neurokinin 1 receptor agonist, indicates several common features in the distribution of hydrophobic and hydrophilic residues. Both the peptides show an amphiphilic character towards the middle region. The similarities suggest that the molecules interact with the receptor in an analogous manner.  相似文献   

11.
The tertiary structure of a unique C5a receptor antagonist was determined by two-dimensional NMR spectroscopy. The core domain of this 8-kDa antagonist exists as an antiparallel helical bundle, similar to recombinant human (rh)-C5a. However, unlike C5a, the antagonist's C terminus was found to be conformationally restricted along a groove between helices one and four in the core domain. This conformational restriction situates C-terminal D-Arg 75 in a wedge between core residues Arg 46 and His 15. Correlation of the antagonist's tertiary structure with point mutation analysis revealed the formation of a positively charged contiguous contact surface comprised of D-Arg 75, Arg 46, Lys 49, and His 15. The significance of this surface in generating antagonist properties implies a single binding site with the C5a receptor and provides a structural template for drug design.  相似文献   

12.
Compstatin is a 13‐residue peptide that inhibits activation of the complement system by binding to the central component C3 and its fragments C3b and C3c. A combination of theoretical and experimental approaches has previously allowed us to develop analogs of the original compstatin peptide with up to 264‐fold higher activity; one of these analogs is now in clinical trials for the treatment of age‐related macular degeneration (AMD). Here we used functional assays, surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) to assess the effect of modifications at three key residues (Trp‐4, Asp‐6, Ala‐9) on the affinity and activity of compstatin and its analogs, and we correlated our findings to the recently reported co‐crystal structure of compstatin and C3c. The KD values for the panel of tested analogs ranged from 10?6 to 10?8 M. These differences in binding affinity could be attributed mainly to differences in dissociation rather than association rates, with a >4‐fold range in kon values (2–10 × 105 M?1 s?1) and a koff variation of >35‐fold (1–37 × 10?2 s?1) being observed. The stability of the C3b‐compstatin complex seemed to be highly dependent on hydrophobic effects at position 4, and even small changes at position 6 resulted in a loss of complex formation. Induction of a β‐turn shift by an A9P modification resulted in a more favorable entropy but a loss of binding specificity and stability. The results obtained by the three methods utilized here were highly correlated with regard to the activity/affinity of the analogs. Thus, our analyses have identified essential structural features of compstatin and provided important information to support the development of analogs with improved efficacy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
C4 fulfills a vital role in the propagation of the classical and lectin pathways of the complement system. Although there are no reports to date of a C4 functional activity that is mediated solely by the C4d region, evidence clearly points to it having a vital role in a number of the properties of native C4 and its major activation fragment, C4b. Contained within the C4d region are the thioester-forming residues, the four isotype-specific residues controlling the C4A/C4B transacylation preferences, a binding site for nascent C3b important in assembling the classical pathway C5 convertase and determinants for the Chido/Rodgers (Ch/Rg) blood group antigens. In view of its functional importance, we undertook to determine the three-dimensional structure of C4d by X-ray crystallography. Here we report the 2.3A resolution structure of C4Ad, the C4d fragment derived from the human C4A isotype. Although the approximately 30% sequence identity between C4Ad and the corresponding fragment of C3 might be expected to establish a general fold similarity between the two molecules, C4Ad in fact displays a fold that is essentially superimposable on the structure of C3d. By contrast, the electrostatic characteristics of the various faces of the C4Ad molecule show marked differences from the corresponding faces of C3d, likely reflecting the differences in function between C3 and C4. Residues previously predicted to form the major Ch/Rg epitopes were proximately located and accessible on the concave surface of C4Ad. In addition to providing further insights on the current models for the covalent binding reaction, the C4Ad structure allows one to rationalize why C4d is not a ligand for complement receptor 2. Finally the structure allows for the visualization of the face of the molecule containing the binding site for C3b utilized in the assembly of classical pathway C5 convertase.  相似文献   

14.
A 12‐residue MST isolated from a marine organism is a potent serine protease inhibitor that has a double cyclic structure composed of two ester linkages formed between the β‐hydroxyl and β‐carboxyl groups, Thr3‐Asp9 and Ser8‐Asp11. MST was synthesized by a regioselective esterification procedure employing two sets of orthogonally removable side‐chain protecting groups for the Asp and Ser/Thr residues. In the MST molecule, there were no significant changes observed in yield by changing the order of esterification. SAR study of MST revealed that the minimum required structure for expressing the inhibitory activity is the sequence (1–9) in a monocyclic structure where Pro7 located in the ring plays a crucial role in keeping the structural rigidity. By applying the structural motif of MST, we rationally designed protease inhibitory specificities that differ from those of the natural product. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration.  相似文献   

16.
Bacteriocin AS-48 is a 70-residue cyclic polypeptide from Enterococcus faecalis that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. The structure of bacteriocin AS-48 consists of a globular arrangement of five helices with a high positive electrostatic potential in the region comprising helix 4, the turn linking helix 4 and 5, and the N-terminus of helix 5. This region has been considered to participate in its biological activity and in particular in membrane permeation. To understand the mechanism of the antibacterial activity of AS-48 and to discriminate the several mechanisms proposed, a simplified bacteriocin was designed consisting of 21 residues and containing the high positively charged region. A disulfide bridge was introduced at an appropriate position to stabilize the peptide and to conserve the helix-turn-helix arrangement in the parent molecule. According to (1)H and (13)C NMR data, the designed simplified bacteriocin fragment adopts a significant population of a native-like helical hairpin conformation in aqueous solution, which is further stabilized in 30% TFE. The designed peptide does not show any antibacterial activity, though it is shown to compete with the intact native bacteriocin AS-48. These results suggest that the mechanism of membrane disruption by bacteriocin is not as simple as being driven by a deposition of positively charged molecules on the plane of the bacterial membrane. Some other regions of the protein must be present such as, for instance, hydrophobic regions so as to enhance the accumulation of the peptide and favour membrane permeation.  相似文献   

17.
The solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli was determined by nuclear magnetic resonance with a RMSD of 0.6A. Yfia shows a global beta-alpha-beta-beta-beta-alpha folding topology similar to its homologue HI0257 of Haemophilus influenzae and the double-strand-binding domain of Drosophila Staufen protein. Yfia and HI0257 differ in their surface charges and in the composition of their flexible C-termini, indicating their specificity to different target molecules. Both proteins exhibit a hydrophobic and polar region, which probably functions as interaction site for protein complex formation. Despite their similarity to the dsRBD fold, Yfia does not bind to model fragments of 16S ribosomal RNA as determined by NMR titration and gel shift experiments.  相似文献   

18.
The conformation of a melittin—inhibitor complex was studied by solution NMR, solid-state NMR, and circular dichroism. In solution, binding was studied by titrating inhibitor against melittin in dimethyl sulfoxide, methanol, aqueous buffer, and dodecylphosphocholine micelles. The change in chemical shift of Trp19 resonances and the formation of a precipitate at 1:1 molar ratio indicated that the inhibitor was bound to melittin. Solid-state NMR also showed a change in chemical shift of two labeled carbons of melittin near Pro14 and a change in 1H T 1 relaxation times when complexed with inhibitor. Rotational resonance experiments of melittin labeled in the proline region indicated a change in conformation for melittin complexed with inhibitor. This observation was also supported by circular dichroism measurements, indicating a reduction in -helical structure for increasing ratios of inhibitor bound to melittin.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mediator of angiogenesis and vasculogenesis. VEGF is involved pathologically in cancer, proliferative retinopathy and rheumatoid arthritis, and as such represents an important therapeutic target. Three classes of disulfide-constrained peptides that antagonize binding of the VEGF dimer to its receptors, KDR and Flt-1, were identified previously using phage display methods. NMR studies of a representative peptide from the most potent class of these peptide antagonists, v107 (GGNECDAIRMWEWECFERL), were undertaken to characterize its interactions with VEGF. v107 has no defined structure free in solution, but binding to VEGF induces folding of the peptide. The solution structure of the VEGF receptor-binding domain-v107 complex was determined using 3940 (1970 per VEGF monomer) internuclear distance and 476 (238 per VEGF monomer) dihedral angle restraints derived from NMR data obtained using samples containing either (13)C/(15)N-labeled protein plus excess unlabeled peptide or (13)C/(15)N-labeled peptide plus excess unlabeled protein. Residual dipolar coupling restraints supplemented the structure determination of the complex and were found to increase significantly both the global precision of VEGF in the complex and the agreement with available crystal structures of VEGF. The calculated ensemble of structures is of high precision and is in excellent agreement with the experimental restraints. v107 has a turn-helix conformation with hydrophobic residues partitioned to one face of the peptide and polar or charged residues at the other face. Contacts between two v107 peptides and the VEGF dimer are mediated by primarily hydrophobic side-chain interactions. The v107-binding site on VEGF overlaps partially with the binding site of KDR and is similar to that for domain 2 of Flt-1. The structure of the VEGF-v107 complex provides new insight into how binding to VEGF can be achieved that may be useful for the design of small molecule antagonists.  相似文献   

20.
Decorsin is a 39-residue RGD-protein crosslinked by three disulfide bridges isolated from the leech Macrobdella decora belonging to the family of GPIIb-IIIa antagonists and acting as a potent inhibitor of platelet aggregation. Here we report the solid-phase synthesis of decorsin using the Fmoc strategy. The crude polypeptide was purified by reverse-phase HPLC in its reduced form and allowed to refold in the presence of glutathione. The homogeneity of the synthetic oxidized decorsin was established by reverse-phase HPLC and capillary zone electrophoresis. The results of amino acid analysis after acid hydrolysis of the synthetic protein, NH2-terminal sequencing and mass determination (4,377 Da) by electrospray mass spectrometry were in full agreement with this theory. The correct pairing of the three disulfide bridges in synthetic decorsin was determined by a combined approach of both peptide mapping using proteolytic enzymes and analysis of the disulfide chirality by CD spectroscopy in the near-UV region. Synthetic decorsin inhibited human platelet aggregation with an IC50 of approximately 0.1 microM, a figure quite similar to that determined utilizing decorsin from natural source. In particular, the synthetic protein was 2,000-fold more potent than a model RGD-peptide (e.g., Arg-Gly-Asp-Ser) in inhibiting platelet aggregation. Thermal denaturation experiments of synthetic decorsin, monitored by CD spectroscopy, revealed its high thermal stability (Tm approximately 74 degrees C). The features of the oxidative refolding process of reduced decorsin, as well as the thermal stability of the oxidized species, were compared with those previously determined for the NH2-terminal core domain fragment 1-41 or 1-43 from hirudin. This fragment shows similarity in size, pairing of the three disulfides and three-dimensional structure with those of decorsin, even if very low sequence similarity. It is suggested that the less efficient oxidative folding and the enhanced thermal stability of decorsin in respect to those of hirudin core domain likely can be ascribed to the presence of the six Pro residues in the decorsin chain, whereas none is present in the hirudin domain. The results of this study indicate that decorsin can be obtained by solid-phase methodology in purity and quantities suitable for structural and functional studies and thus open the way to prepare by chemical methods novel decorsin derivatives containing unusual amino acids or even non-peptidic moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号