首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors.  相似文献   

2.
A new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc. The pyrimidine triones mimic substrates in forming hydrogen bonds to key residues in the active site, and provide opportunities for placing appropriately chosen groups into the S1' specificity pocket of MMPS: A number of compounds have been synthesized and assayed against stromelysin, and the variations in potency are explained in terms of the binding mode revealed in the X-ray crystal structure.  相似文献   

3.
Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 ? resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.  相似文献   

4.
Ko R  Okano K  Maeda S 《Journal of virology》2000,74(23):11240-11246
Sequence analysis of the Xestia c-nigrum granulovirus (XcGV) genome identified an open reading frame encoding a 469-amino-acid (54-kDa) protein with over 30% amino acid sequence identity to a region of about 150 amino acids that includes the catalytic domains of human stromelysin 1 (Str1)/matrix metalloproteinase 3 (MMP-3) (EC 3.4.24.17) and sea urchin hatching enzyme (HE). Stromelysin homologs have not been reported from baculoviruses or other viruses. Unlike human Str1 and sea urchin HE, the putative XcGV-MMP does not have a signal peptide and lacks the peptide motif involved in the cysteine switch that maintains other MMPs in an inactive form. The putative XcGV-MMP, however, possesses a conserved zinc-binding motif in its putative catalytic domain. The XcGV-MMP homolog was cloned, and a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) that expresses XcGV-MMP under the polyhedrin promoter was constructed. A distinct pattern of melanization was observed in B. mori larvae infected with MMP-expressing BmNPV. Fat body extracts from larvae overexpressing the 54-kDa recombinant MMP digested dye-impregnated collagen (Azocoll). The enzymatic activity was inhibited by two metalloproteinase inhibitors, EDTA and 1,10-phenanthroline. These results suggest that the XcGV MMP-3 gene homolog encodes a functional metalloproteinase.  相似文献   

5.
The viral neuraminidase enzyme is an established target for anti-influenza pharmaceuticals. However, viral neuraminidase inhibitors could have off-target effects due to interactions with native human neuraminidase enzymes. We report the activity of a series of known inhibitors of the influenza group-1 neuraminidase enzyme (N1 subtype) against recombinant forms of the human neuraminidase enzymes NEU3 and NEU4. These inhibitors were designed to take advantage of an additional enzyme pocket (known as the 150-cavity) near the catalytic site of certain viral neuraminidase subtypes (N1, N4 and N8). We find that these modified derivatives have minimal activity against the human enzymes, NEU3 and NEU4. Two compounds show moderate activity against NEU3, possibly due to alternative binding modes available to these structures. Our results reinforce that recognition of the glycerol side-chain is distinct between the viral and human NEU enzymes, and provide experimental support for improving the selectivity of viral neuraminidase inhibitors by exploiting the 150-cavity found in certain subtypes of viral neuraminidases.  相似文献   

6.
The biologically active conformation of a novel, very potent, nonpeptidic stromelysin inhibitor was determined by X-nucleus filtered and multidimensional NMR spectroscopy. This bound conformer was subsequently docked into the stromelysin catalytic domain (SCD) using intermolecular distance constraints derived from NOE data. The complex showed the S1′ pocket of stromelysin to be the major site of enzyme-inhibitor interaction with other portions of the inhibitor spanning the S2′ and S1 binding sites. Theoretical predictions of SCD-inhibitor binding from molecular modeling studies were consistent with the NMR data. Comparison of modeled enzyme-inhibitor complexes for stromelysin and collagenase revealed an alternate binding mode for the inhibitor in collagenase, suggesting a similar binding interaction might also be possible for stromelysin. The NMR results, however, revealed a single SCD-inhibitor binding mode and provided a structural template for the design of more potent stromelysin inhibitors.  相似文献   

7.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

8.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

9.
Stromelysin-1 is a member of a tissue metalloproteinase family whose members are all capable of degrading extracellular matrix components. A truncated form of human fibroblast prostromelysin 1 lacking the C-terminal, hemopexin-like domain has been expressed in Escherichia coli and purified to homogeneity. Treatment of this short form of prostromelysin with (aminophenyl)mercuric acetate resulted in activation and loss of the propeptide in a manner identical with the wild-type, full-length protein. Kinetic comparisons using Nle11-substance P as a substrate showed that the wild-type stromelysin and the truncated form of the enzyme had similar kcat and Km values. Likewise, both enzymes displayed similar Ki values for a hydroxamate-containing peptide inhibitor. Taken together, these results indicate that the C-terminal portion of stromelysin is not required for proper folding of the catalytic domain, maintenance of the enzyme in a latent form, activation with an organomercurial, cleavage of a peptide substrate, or interaction with an inhibitor. Moreover, the active short form of stromelysin displayed a reduction in the C-terminal heterogeneity, a characteristic degradation of the full-length stromelysin, and thereby provides a more suitable protein for future structural studies.  相似文献   

10.
Stromelysin, a representative matrix metalloproteinase and target of drug development efforts, plays a prominent role in the pathological proteolysis associated with arthritis and secondarily in that of cancer metastasis and invasion. To provide a structural template to aid the development of therapeutic inhibitors, we have determined a medium-resolution structure of a 20-kDa complex of human stromelysin's catalytic domain with a hydrophobic peptidic inhibitor using multinuclear, multidimensional NMR spectroscopy. This domain of this zinc hydrolase contains a mixed beta-sheet comprising one antiparallel strand and four parallel strands, three helices, and a methionine-containing turn near the catalytic center. The ensemble of 20 structures was calculated using, on average, 8 interresidue NOE restraints per residue for the 166-residue protein fragment complexed with a 4-residue substrate analogue. The mean RMS deviation (RMSD) to the average structure for backbone heavy atoms is 0.91 A and for all heavy atoms is 1.42 A. The structure has good stereochemical properties, including its backbone torsion angles. The beta-sheet and alpha-helices of the catalytic domains of human stromelysin (NMR model) and human fibroblast collagenase (X-ray crystallographic model of Lovejoy B et al., 1994b, Biochemistry 33:8207-8217) superimpose well, having a pairwise RMSD for backbone heavy atoms of 2.28 A when three loop segments are disregarded. The hydroxamate-substituted inhibitor binds across the hydrophobic active site of stromelysin in an extended conformation. The first hydrophobic side chain is deeply buried in the principal S'1 subsite, the second hydrophobic side chain is located on the opposite side of the inhibitor backbone in the hydrophobic S'2 surface subsite, and a third hydrophobic side chain (P'3) lies at the surface.  相似文献   

11.
12.
Matrix metalloproteinases (MMPs) are implicated in diseases such as arthritis and cancer. Among these enzymes, stromelysin-1 can also activate the proenzymes of other MMPs, making it an attractive target for pharmaceutical design. Isothermal titration calorimetry (ITC) was used to analyze the binding of three inhibitors to the stromelysin catalytic domain (SCD). One inhibitor (Galardin) uses a hydroxamic acid group (pK(a) congruent with 8.7) to bind the active site zinc; the others (PD180557 and PD166793) use a carboxylic acid group (pK(a) congruent with 4.7). Binding affinity increased dramatically as the pH was decreased over the range 5.5-7.5. Experiments carried out at pH 6.7 in several different buffers revealed that approximately one and two protons are transferred to the enzyme-inhibitor complexes for the hydroxamic and carboxylic acid inhibitors, respectively. This suggests that both classes of inhibitors bind in the protonated state, and that one amino acid residue of the enzyme also becomes protonated upon binding. Similar experiments carried out with the H224N mutant gave strong evidence that this residue is histidine 224. DeltaG, DeltaH, DeltaS, and DeltaC(p) were determined for the three inhibitors at pH 6.7, and DeltaC(p) was used to obtain estimates of the solvational, translational, and conformational components of the entropy term. The results suggest that: (1) a polar group at the P1 position can contribute a large favorable enthalpy, (2) a hydrophobic group at P2' can contribute a favorable entropy of desolvation, and (3) P1' substituents of certain sizes may trigger an entropically unfavorable conformational change in the enzyme upon binding. These findings illustrate the value of complete thermodynamic profiles generated by ITC in discovering binding interactions that might go undetected when relying on binding affinities alone.  相似文献   

13.
To probe the substrate specificity of the human metalloproteinase stromelysin (SLN), we determined values of kc/Km for the SLN-catalyzed hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-MetNH2; SP; kc/Km = 1790 +/- 140 M-1 s-1), 15 analogues of SP, and 17 other peptides. We found a remarkably narrow substrate specificity for SLN: while SP and its analogues could serve as substrates for SLN (hydrolysis occurred exclusively at the Gln6-Phe7 bond), peptides that were not direct analogues could not (kc/Km less than 3 M-1 s-1). From the study of the SLN-catalyzed hydrolysis of SP and its analogues, the following findings emerged: (1) Decreasing the length of SP results in decreases in kc/Km. (2) Conservative amino acid replacements near the scissle bond of SP decrease kc/Km. (3) The SP analogue in which Gly9 is replaced with sarcosine (N-methylglycine) is not hydrolyzed by SLN (kc/Km less than 3 M-1 s-1). (4) Several SP analogues that are not hydrolyzed by SLN are inhibitors of the enzyme. The complexes formed from interaction of SLN with these peptides have dissociation constants that are similar to the Km value for the complex of SLN and SP. Combined, these results suggest that SLN uses the energy that is available from favorable interactions with its substrate to stabilize catalytic transition states but not the Michaelis complex or other stable-state complexes.  相似文献   

14.
A sensitive fluorescence resonance energy transfer method was developed for the direct measurement of the dissociation constants of stromelysin inhibitors. The method is applied to the thiadiazole class of stromelysin inhibitors and it takes advantage of the fact that, upon binding to the active site of enzyme, the thiadiazole ring, with its absorbance centered at 320 nm, is able to quench the fluorescence of the tryptophan residues surrounding the catalytic site. The changes in fluorescence are proportional to the occupancy of the active site: Analysis of the fluorescence versus inhibitor concentration data yields dissociation constants that are in agreement with the corresponding competitive inhibitory constants measured by a catalytic rate assay. The affinity of nonthiadiazole inhibitors of stromelysin-such as hydroxamic acids and others-can be determined from the concentration-dependent displacement of a thiadiazole of known affinity. Using this displacement method, we determined the affinities of a number of structurally diverse inhibitors toward stromelysin. Since the three tryptophan residues located in the vicinity of the active site of stromelysin are conserved in gelatinase and collagenase, the method should also be applicable to inhibitors of other matrix metalloproteinases.  相似文献   

15.
The proteolytic enzyme stromelysin-1 is a member of the family of matrix metalloproteinases and is believed to play a role in pathological conditions such as arthritis and tumor invasion. Stromelysin-1 is synthesized as a pro-enzyme that is activated by removal of an N-terminal prodomain. The active enzyme contains a catalytic domain and a C-terminal hemopexin domain believed to participate in macromolecular substrate recognition. We have determined the three-dimensional structures of both a C-truncated form of the proenzyme and an inhibited complex of the catalytic domain by X-ray diffraction analysis. The catalytic core is very similar in the two forms and is similar to the homologous domain in fibroblast and neutrophil collagenases, as well as to the stromelysin structure determined by NMR. The prodomain is a separate folding unit containing three alpha-helices and an extended peptide that lies in the active site of the enzyme. Surprisingly, the amino-to-carboxyl direction of this peptide chain is opposite to that adopted by the inhibitor and by previously reported inhibitors of collagenase. Comparison of the active site of stromelysin with that of thermolysin reveals that most of the residues proposed to play significant roles in the enzymatic mechanism of thermolysin have equivalents in stromelysin, but that three residues implicated in the catalytic mechanism of thermolysin are not represented in stromelysin.  相似文献   

16.
In this paper we describe a method for validating therapeutic gene targets in arthritic disease. Ribozymes are catalytic oligonucleotides capable of highly sequence-specific cleavage of RNA. We designed ribozymes that cleave the mRNA encoding stromelysin, a matrix metalloproteinase implicated in cartilage catabolism. Ribozymes were initially screened in cultured fibroblasts to identify sites in the mRNA that were accessible for binding and cleavage. Accessible sites for ribozyme binding were found in various regions of the mRNA, including the 5' untranslated region, the coding region, and the 3' untranslated region. Several ribozymes that mediated sequence-specific and dose-dependent inhibition of stromelysin expression were characterized. Site selection in cell culture was predictive of in vivo bioactivity. An assay for measuring cartilage catabolism in rabbit articular cartilage explants was developed. Ribozymes inhibited IL-1-stimulated stromelysin mRNA expression in articular cartilage explants, yet failed to inhibit proteoglycan degradation. This indicated that up-regulation of stromelysin was not essential for IL-1-induced cartilage catabolism. Broad applications of this approach in therapeutic target validation are discussed.  相似文献   

17.
Modification of the P(1)' substituent of macrocyclic matrix metalloproteinase (MMP) inhibitors provided compounds that are selective for inhibition of tumor necrosis factor-alpha converting enzyme (TACE) over MMP-1 and MMP-2. Several analogues potently inhibited the release of TNF-alpha in a THP-1 cellular assay. Compounds containing a trimethoxyphenyl group in the P(1)' substituent demonstrated TACE selectivity across several series of hydroxamate-based inhibitors.  相似文献   

18.
The proteolytic activity of matrix metalloproteinases (MMPs) towards extracellular matrix components is held in check by the tissue inhibitors of metalloproteinases (TIMPs). The binary complex of TIMP-2 and membrane-type-1 MMP (MT1-MMP) forms a cell surface located ''receptor'' involved in pro-MMP-2 activation. We have solved the 2.75 A crystal structure of the complex between the catalytic domain of human MT1-MMP (cdMT1-MMP) and bovine TIMP-2. In comparison with our previously determined MMP-3-TIMP-1 complex, both proteins are considerably tilted to one another and show new features. CdMT1-MMP, apart from exhibiting the classical MMP fold, displays two large insertions remote from the active-site cleft that might be important for interaction with macromolecular substrates. The TIMP-2 polypeptide chain, as in TIMP-1, folds into a continuous wedge; the A-B edge loop is much more elongated and tilted, however, wrapping around the S-loop and the beta-sheet rim of the MT1-MMP. In addition, both C-terminal edge loops make more interactions with the target enzyme. The C-terminal acidic tail of TIMP-2 is disordered but might adopt a defined structure upon binding to pro-MMP-2; the Ser2 side-chain of TIMP-2 extends into the voluminous S1'' specificity pocket of cdMT1-MMP, with its Ogamma pointing towards the carboxylate of the catalytic Glu240. The lower affinity of TIMP-1 for MT1-MMP compared with TIMP-2 might be explained by a reduced number of favourable interactions.  相似文献   

19.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

20.
A novel class of nonpeptide inhibitors of stromelysin (MMP-3) has been discovered with the use of mass spectrometry. The method relies on the development of structure-activity relationships by mass spectrometry (SAR by MS) and utilizes information derived from the binding of known inhibitors to identify novel inhibitors of a target protein with a minimum of synthetic effort. Noncovalent complexes of known inhibitors with a target protein are analyzed; these inhibitors are deconstructed into sets of fragments which compete for common or overlapping binding sites on the target protein. The binding of each fragment set can be studied independently. With the use of competition studies, novel members of each fragment set are identified from compound libraries that bind to the same site on the target protein. A novel inhibitor of the target protein was then constructed by chemically linking a combination of members of each fragment set in a manner guided by the proximity and orientation of the fragments derived from the known inhibitors. In the case of stromelysin, a novel inhibitor composed of favorably linked fragments was observed to form a 1:1 complex with stromelysin. Compounds that were not linked appropriately formed higher order complexes with stoichiometries of 2:1 or greater. These linked molecules were subsequently assessed for their ability to block stromelysin function in a chromogenic substrate assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号