首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axonal microtubules consist of two distinct domains that differ in tyrosinated-tubulin staining. One domain stains weakly for tyrosinated-tubulin, while the other stains strongly, and the transition between these domains is abrupt; the tyrosinated-tubulin-poor domain is at the minus end of the microtubule, and the tyrosinated-tubulin-rich domain extends from the plus end of the tyrosinated-tubulin-poor domain to the end of the microtubule. The tyrosinated-tubulin-poor domain is drug- and cold-stable, whereas the tyrosinated-tubulin-rich domain is drug-labile, but largely cold-stable. STOP (stable-tubule-only-polypeptide) has potent microtubule stabilizing activity, and may contribute to the cold and drug stability of axonal microtubules. To evaluate this possibility, we examined STOP association with the different types of microtubule polymer in cultured sympathetic neurons. By immunofluorescence, STOP is present in the cell body and throughout the axon; axonal staining declines progressively in the distal portion of the axon, and reaches lowest levels in the growth cone. Growth cone microtubules, which are drug and cold labile, do not stain detectably for STOP. To examine individual axonal microtubules for STOP, we used a procedure that causes microtubules to splay out from the main axonal array so that they can be visualized for relatively long distances along their length. Both tyrosinated-tubulin-rich and tyrosinated-tubulin-poor polymer stain for STOP, but STOP is several-fold more concentrated on tyrosinated-tubulin-poor polymer than on tyrosinated-tubulin-rich polymer. These results are consistent with STOP dependent stabilization of axonal microtubules, with the difference between cold-stable polymer versus cold- + drug-stable polymer determined by the amount of STOP on the polymer.  相似文献   

2.
Although microtubules are intrinsically labile tubulin assemblies, many cell types contain stable polymers, resisting depolymerizing conditions such as exposure to the cold or the drug nocodazole. This microtubule stabilization is largely due to polymer association with STOP proteins. There are several STOP variants, some with capacity to induce microtubule resistance to both the cold and nocodazole, others with microtubule cold stabilizing activity only. These microtubule-stabilizing effects of STOP proteins are inhibited by calmodulin and we now demonstrate that they are determined by two distinct kinds of repeated modular sequences (Mn and Mc), both containing a calmodulin-binding peptide, but displaying different microtubule stabilizing activities. Mn modules induce microtubule resistance to both the cold and nocodazole when expressed in cells. Mc modules, which correspond to the STOP central repeats, have microtubule cold stabilizing activity only. Mouse neuronal STOPs, which induce both cold and drug resistance in cellular microtubules, contain three Mn modules and four Mc modules. Compared with neuronal STOPs, the non-neuronal F-STOP lacks multiple Mn modules and this corresponds with an inability to induce nocodazole resistance. STOP modules represent novel bifunctional calmodulin-binding and microtubule-stabilizing sequences that may be essential for the generation of the different patterns of microtubule stabilization observed in cells.  相似文献   

3.
STOP proteins     
Microtubules assembled from pure tubulin in vitro are labile, rapidly depolymerized upon exposure to the cold. In contrast, in a number of cell types, cytoplasmic microtubules are stable, resistant to prolonged cold exposure. During the past years, the molecular basis of this microtubule stabilization in cells has been elucidated. Cold stability is due to polymer association with different variants of a calmodulin-regulated protein, STOP protein. The dynamic and hence the physiological consequences of STOP association with microtubules vary in different tissues. In neurons, STOP seems almost permanently associated with microtubules. STOP is apparently a major determinant of microtubule turnover in such cells and is required for normal neuronal differentiation. In cycling cells, only minor amounts of STOP are associated with interphase microtubules and STOP does not measurably affects microtubule dynamics. However, STOP is associated with mitotic microtubules in the spindle. Recent results indicate that such an association could be vital for meiosis and for the long-term fidelity of the mitotic process.  相似文献   

4.
Microtubules are composed of α-tubulin and β-tubulin dimers. Microtubules yield tubulin dimers when exposed to cold, which reassemble spontaneously to form microtubule fibers at 37°C. However, mammalian neurons, glial cells, and fibroblasts have cold-stable microtubules. While studying the microtubule toxicity mechanisms of the exotoxin Y from Pseudomonas aeruginosa in pulmonary microvascular endothelial cells, we observed that some endothelial microtubules were very difficult to disassemble in the cold. As a consequence, we designed studies to test the hypothesis that microvascular endothelium has a population of cold-stable microtubules. Pulmonary microvascular endothelial cells and HeLa cells (control) were grown under regular cell culture conditions, followed by exposure to an ice-cold water bath and a microtubule extraction protocol. Polymerized microtubules were detected by immunofluorescence confocal microscopy and Western blot analyses. After cold exposure, immunofluorescence revealed that the majority of HeLa cell microtubules disassembled, whereas a smaller population of endothelial cell microtubules disassembled. Immunoblot analyses showed that microvascular endothelial cells express the microtubule cold-stabilizing protein N-STOP (neuronal stable tubule-only polypeptides), and that N-STOP binds to endothelial microtubules after cold exposure, but not if microtubules are disassembled with nocodazole before cold exposure. Hence, pulmonary endothelia have a population of cold-stable microtubules.  相似文献   

5.
R L Margolis  C T Rauch  F Pirollet    D Job 《The EMBO journal》1990,9(12):4095-4102
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.  相似文献   

6.
The STOP protein (stable tubule-only polypeptide) is a calmodulin-regulated protein which associates with microtubules and induces cold stabilization. There are different isoforms of this protein that arise from alternative splicing of STOP mRNA. Neurons express two major variants N-STOP (125 kDa) and E-STOP (84 kDa). NIH 3T3 fibroblasts contain a major F-STOP isoform (42 kDa) and two minor STOP variants (48 and 89 kDa). Previously, we demonstrated the presence of N-STOP in the cytoskeleton associated with myelin isolated from animals injected with apotransferrin. Since this protein was only described as a neuronal protein we decided to further investigate the expression of this protein in oligodendrocyte cultures. The analysis of the STOP protein expression in oligodendrocyte shows that STOP protein is expressed in the soma and processes of oligodendrocyte precursors, as well as in immature and mature oligodendroglial cells. In addition, we found that MBP shows a high degree of colocalization with STOP protein. By Western blot analysis, it was found that these cells express a major STOP variant (89 kDa). When the cultures were exposed to cold temperature we found that STOP protein associates with microtubules and induces microtubule cold stabilization. Under these experimental conditions, we found that MBP associates with microtubules too, and maintains its colocalization with STOP protein. At present, we are doing new assays directed to further characterize STOP (89 kDa) protein and to elucidate how this protein participates in the formation of myelin by oligodendrocytes.  相似文献   

7.
Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3beta correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.  相似文献   

8.
Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.  相似文献   

9.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

10.
Cdk5 and its neuronal activator p35 play an important role in neuronal migration and proper development of the brain cortex. We show that p35 binds directly to alpha/beta-tubulin and microtubules. Microtubule polymers but not the alpha/beta-tubulin heterodimer block p35 interaction with Cdk5 and therefore inhibit Cdk5-p35 activity. p25, a neurotoxin-induced and truncated form of p35, does not have tubulin and microtubule binding activities, and Cdk5-p25 is inert to the inhibitory effect of microtubules. p35 displays strong activity in promoting microtubule assembly and inducing formation of microtubule bundles. Furthermore, microtubules stabilized by p35 are resistant to cold-induced disassembly. In cultured cortical neurons, a significant proportion of p35 localizes to microtubules. When microtubules were isolated from rat brain extracts, p35 co-assembled with microtubules, including cold-stable microtubules. Together, these findings suggest that p35 is a microtubule-associated protein that modulates microtubule dynamics. Also, microtubules play an important role in the control of Cdk5 activation.  相似文献   

11.
Abstract: Properties so far studied of the 125-kDa 14C-arginylated protein from rat brain show remarkable similarities with those of the STOP (stable tubule only polypeptide) protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the 125-kDa 14C-arginylated protein moves to the same position as the STOP protein. The 125-kDa 14C-arginylated protein was immunoprecipitated by the monoclonal Mab 296 antibody specific for neuronal STOP protein. The 125-kDa 14C-arginylated protein was retained by a calmodulin column like STOP protein. As occurs with the STOP protein, the 125-kDa 14C-arginylated protein is found in higher proportion in cold-stable than in cold-labile microtubules. However, the modified protein associates with microtubules in a lower proportion than the STOP protein. We conclude that the STOP protein incorporates arginine by a posttranslational reaction but that only a small fraction of the STOP protein shows acceptor capacity in vitro.  相似文献   

12.
In general, microtubules are labile structures which depolymerize at low temperature and are sensitive to Ca2+. However, in brain tissue, axonal microtubules are disassembly-resistant and can exist without attachment to a microtubule organizing center. Stable microtubules cannot be purified by usual recycling procedures and this has made the elucidation of the molecular mechanisms involved in their stabilization difficult. This paper summarizes previous work in our laboratories, aimed at the identification of brain microtubule stabilizing proteins. We present assay methods which allow the detection of microtubule stability effectors in complex extracts and in chromatographic column fractions. Applied to brain crude extracts, they result in the isolation of Ca(2+)-calmodulin binding and Ca(2+)-calmodulin regulated proteins. One, called STOP, appears to account for microtubule stabilization in neurons. A second protein with similar activity is myelin basic protein. Non-neuronal tissues also contain Ca(2+)-calmodulin-regulated effectors which appear to differ in structure from their neuronal counterparts. Thus, in all tissues examined, microtubule stability seems to be accounted for by unique Ca(2+)-calmodulin regulated proteins, showing tissue specificity.  相似文献   

13.
《The Journal of cell biology》1985,101(5):1680-1689
We have developed a method to distinguish microtubule associated protein (MAP)-containing regions from MAP-free regions within a microtubule, or within microtubule sub-populations. In this method, we measure the MAP-dependent stabilization of microtubule regions to dilution-induced disassembly of the polymer. The appropriate microtubule regions are identified by assembly in the presence of [3H]GTP, and assayed by filter trapping and quantitation of microtubule regions that contain label. We find that MAPs bind very rapidly to polymer binding sites and that they do not exchange from these sites measurably once bound. Also, very low concentrations of MAPs yield measurable stabilization of local microtubule regions. Unlike the stable tubule only polypeptide (STOP) proteins, MAPs do not exhibit any sliding behavior under our assay conditions. These results predict the presence of different stability subclasses of microtubules when MAPs are present in less than saturating amounts. The data can readily account for the observed "dynamic instability" of microtubules through unequal MAP distributions. Further, we report that MAP dependent stabilization is quantitatively reversed by MAP phosphorylation, but that calmodulin, in large excess, has no specific influence on MAP protein activity when MAPs are on microtubules.  相似文献   

14.
STOP proteins     
Bosc C  Andrieux A  Job D 《Biochemistry》2003,42(42):12125-12132
Microtubules assembled from purified tubulin in vitro are labile, rapidly disassembling when exposed to a variety of depolymerizing conditions such as cold temperature. In contrast, in many cell types, microtubules seem to be unaffected when the cell is exposed to the cold. This resistance of microtubules to the cold has been intriguing because the earliest and by far most studied microtubule-associated proteins such as MAP2 and tau are devoid of microtubule cold stabilizing activity. Over the past several years, it has been shown that resistance of microtubules to the cold is largely due to polymer association with a class of microtubule-associated proteins called STOPs. STOPs are calmodulin-binding and calmodulin-regulated proteins which, in mammals, are encoded by a single gene but exhibit substantial cell specific variability due to mRNA splicing and alternative promoter use. STOP microtubule stabilizing activity has been ascribed to two classes of new bifunctional calmodulin- and microtubule-binding motifs, with distinct microtubule binding properties in vivo. STOPs seem to be restricted to vertebrates and are composed of a conserved domain split by the apparent insertion of variable sequences that are completely unrelated among species. Recently, STOP suppression in mice has been found to induce synaptic defects associated with neuroleptic-sensitive behavioral disorders. Thus, STOPs are important for synaptic plasticity. Additionally, STOP-deficient mice may yield a pertinent model for the study of neuroleptics in illnesses such as schizophrenia, currently thought to result from defects in synapse function.  相似文献   

15.
STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity.  相似文献   

16.
Spatial organization of axonal microtubules   总被引:9,自引:8,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1289-1295
Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization.  相似文献   

17.
Neuronal microtubules are stabilized by two calmodulin-regulated microtubule-associated proteins, E-STOP and N-STOP, which when suppressed in mice induce severe synaptic and behavioral deficits. Here we show that mature neurons also contain a 21-kDa STOP-like protein, SL21, which shares calmodulin-binding and microtubule-stabilizing homology domains with STOP proteins. Accordingly, in different biochemical or cellular assays, SL21 has calmodulin binding and microtubule stabilizing activity. However, in cultured hippocampal neurons, SL21 antibodies principally stain the somatic Golgi and punctate Golgi material in neurites. In cycling cells, transfected SL21 decorates microtubules when expressed at high levels but is otherwise principally visible at the Golgi. The Golgi targeting of SL21 depends on the presence of cysteine residues located within the SL21 N-terminal domain, suggesting that Golgi targeting may require SL21 palmitoylation. Accordingly we find that SL21 is palmitoylated in vivo. N-STOP and E-STOP, which contain the Golgi targeting sequences present in SL21, also display distinct Golgi staining when expressed at low level in cycling cells. Thus neuronal proteins of the STOP family have the capacity to associate with Golgi material, which could be important for STOP synaptic functions.  相似文献   

18.
19.

Aims

In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main methods

The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.

Key findings

Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.

Significance

These results suggest that saccharin enhances neurite extension by promoting microtubule organization.  相似文献   

20.
J Eyer  D White    C Gagnon 《The Biochemical journal》1990,270(3):821-824
Brain tubulin polymerized with dynein isolated from bull spermatozoa forms cold-stable microtubules, in contrast with microtubules made of brain tubulin polymerized by brain microtubule-associated proteins (MAPs). The level of cold-stable microtubules depends on the concentration of dynein used. Addition of dynein to cold-unstable microtubules renders these microtubules stable to cold. Although ATP and a non-hydrolysable ATP analogue increase the formation of microtubules made of tubulin and dynein, these nucleotides have no effect on dynein cold-stabilizing properties. The data suggests that a new factor, not involving the dynein ATPase active site and present in bull sperm dynein preparations, confers cold-stability to microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号