首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

2.
We investigated the relative distributional persistence of Golgi 'matrix' proteins and glycosyltransferases to an endoplasmic reticulum exit block induced by expression of a GDP-restricted Sar1p. HeLa cells were microinjected with plasmid encoding the GDP-restricted mutant (T39N) of Sar1p to block endoplasmic reticulum exit and then scored for the distribution of GM130 (Golgi m atrix protein of 130  kDa), a cis located golgin; p27, a member of the p24 family of proteins; giantin, a protein that interacts indirectly with GM130; and the Golgi glycosyltransferase, N-acetylgalactosaminyltransferase-2 (GalNAcT2). All of these proteins lost their compact, juxtanuclear distribution and displayed characteristics of endoplasmic reticulum/cytoplasmic accumulation with the same dependence on plasmid concentration. The kinetics of redistribution of GM130 and GalNAcT2 were identical. Expression of Sar1pT39N displaced the COPII coat protein Sec13p from endoplasmic reticulum exit sites consistent with disruption of these sites. This occurred without disturbing the overall distribution of endoplasmic reticulum membrane. Furthermore, the reassembly of a juxtanuclear Golgi matrix as assayed by the distribution of GM130 following washout of the Golgi disrupting drug, brefeldin A, was blocked by microinjected Sar1pT39N plasmids. We conclude that the persistence, i.e. stability and maintenance, of Golgi matrix distribution and its reassembly following drug disruption are exquisitely dependent on Sar1p activity.  相似文献   

3.
Models of Golgi apparatus biogenesis and maintenance are focused on two possibilities: one is self-assembly from the endoplasmic reticulum, and the other is nucleation by a stable template. Here, we asked in three different experimental situations whether assembly of the Golgi apparatus might be dynamically nucleated. During microtubule depolymerization, the integral membrane protein p27 and the peripheral Golgi protein GM130, appeared in newly formed, scattered Golgi elements before three different Golgi apparatus cisternal enzymes, whereas GRASP55, a medial peripheral Golgi protein, showed, if anything, a tendency to accumulate in scattered Golgi elements later than a cisternal enzyme. During Golgi formation after brefeldin A washout, endoplasmic reticulum exit of Golgi resident enzymes could be completely separated from that of p27 and GM130. p27 and GM130 accumulation was onto newly organized perinuclear structures, not brefeldin A remnants, and preceded that of a cisternal enzyme. Reassembly was completely sensitive to guanosine 5'-diphosphate-restricted Sar1p. When cells were microinjected with Sar1pWT DNA to reverse a guanosine 5'-diphosphate-restricted Sar1p endoplasmic reticulum-exit block phenotype, GM130 and p27 collected perinuclearly with little to no exit of a cisternal enzyme from the endoplasmic reticulum. The overall data strongly indicate that the assembly of the Golgi apparatus can be nucleated dynamically by GM130/p27 associated structures. We define dynamic nucleation as the first step in a staged organelle assembly process in which new component association forms a microscopically visible structure onto which other components add later, e.g. Golgi cisternae.  相似文献   

4.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

5.
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST‐GFP, to other organelles. GOLD36 showed partial distribution of ST‐GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein‐like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk‐flow marker to the cell surface was also compromised. Using a combination of classical mapping and next‐generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus ( At1g54030 ). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock‐out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post‐ER compartments and suggest that its export from the ER is a requirement to ensure steady‐state maintenance of the organelle’s organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.  相似文献   

6.
During neuron development, the biosynthetic needs of the axon initially outweigh those of dendrites. However, although a localized role for the early secretory pathway in dendrite development has been observed, such a role in axon growth remains undefined. We therefore studied the localization of Sar1, a small GTPase that controls ER export, during early stages of neuronal development that are characterized by selective and robust axon growth. At these early stages, Sar1 was selectively targeted to the axon where it gradually concentrated within varicosities in which additional proteins that function in the early secretory pathway were detected. Sar1 targeting to the axon followed axon specification and was dependent on localized actin instability. Changes in Sar1 expression levels at these early development stages modulated axon growth. Specifically, reduced expression of Sar1, which was initially only detectable in the axon, correlated with reduced axon growth, where as overexpression of Sar1 supported the growth of longer axons. In support of the former finding, expression of dominant negative Sar1 inhibited axon growth. Thus, as observed in lower organisms, mammalian cells use temporal and spatial regulation of endoplasmic reticulum exit site (ERES) to address developmental biosynthetic demands. Furthermore, axons, such as dendrites, rely on ERES targeting and assembly for growth.  相似文献   

7.
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.  相似文献   

8.
Arf GTPases are known to be key regulators of vesicle budding in various steps of membrane traffic in yeast and animal cells. We cloned the Arabidopsis Arf1 homologue, AtArf1, and examined its function. AtArf1 complements yeast arf1 arf2 mutants and its GFP-fusion is localized to the Golgi apparatus in plant cells like its animal counterpart. The expression of dominant negative mutants of AtArf1 in tobacco and Arabidopsis cultured cells affected the localization of co-expressed GFP-tagged proteins in a variety of ways. AtArf1 Q71L and AtArf1 T31N, GTP- and GDP-fixed mutants, respectively, changed the localization of a cis-Golgi marker, AtErd2-GFP, from the Golgi apparatus to the endoplasmic reticulum but not that of GFP-AtRer1B or GFP-AtSed5. GFP-AtRer1B and GFP-AtSed5 were accumulated in aberrant structures of the Golgi by AtArf1 Q71L. A soluble vacuolar protein, sporamin-GFP, was also located to the ER by AtArf1 Q71L. These results indicate that AtArf1 play roles in the vesicular transport between the ER and the Golgi and in the maintenance of the normal Golgi organization in plant cells.  相似文献   

9.
Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.  相似文献   

10.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

11.
In many vacuolate plant cells, individual Golgi bodies appear to be attached to tubules of the pleiomorphic cortical endoplasmic reticulum (ER) network. Such observations culminated in the controversial mobile secretory unit hypothesis to explain transport of cargo from the ER to Golgi via Golgi attached export sites. This proposes that individual Golgi bodies and an attached‐ER exit machinery move over or with the surface of the ER whilst collecting cargo for secretion. By the application of infrared laser optical traps to individual Golgi bodies within living leaf cells, we show that individual Golgi bodies can be micromanipulated to reveal their association with the ER. Golgi bodies are physically attached to ER tubules and lateral displacement of individual Golgi bodies results in the rapid growth of the attached ER tubule. Remarkably, the ER network can be remodelled in living cells simply by movement of laser trapped Golgi dragging new ER tubules through the cytoplasm and new ER anchor sites can be established. Finally, we show that trapped Golgi ripped off the ER are ‘sticky’ and can be docked on to and attached to ER tubules, which will again show rapid growth whilst pulled by moving Golgi.  相似文献   

12.
We have examined the fate of Golgi membranes during mitotic inheritance in animal cells using four-dimensional fluorescence microscopy, serial section reconstruction of electron micrographs, and peroxidase cytochemistry to track the fate of a Golgi enzyme fused to horseradish peroxidase. All three approaches show that partitioning of Golgi membranes is mediated by Golgi clusters that persist throughout mitosis, together with shed vesicles that are often found associated with spindle microtubules. We have been unable to find evidence that Golgi membranes fuse during the later phases of mitosis with the endoplasmic reticulum (ER) as a strategy for Golgi partitioning (Zaal, K.J., C.L. Smith, R.S. Polishchuk, N. Altan, N.B. Cole, J. Ellenberg, K. Hirschberg, J.F. Presley, T.H. Roberts, E. Siggia, et al. 1999. Cell. 99:589-601) and suggest that these results, in part, are the consequence of slow or abortive folding of GFP-Golgi chimeras in the ER. Furthermore, we show that accurate partitioning is accomplished early in mitosis, by a process of cytoplasmic redistribution of Golgi fragments and vesicles yielding a balance of Golgi membranes on either side of the metaphase plate before cell division.  相似文献   

13.
The Sar1 GTPase coordinates the assembly of coat protein complex‐II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER‐to‐Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII‐mediated transport in mammalian cells, we used small interfering RNA (siRNA)‐mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER‐to‐Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen‐I is inhibited. These data provide proof‐of‐principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII .  相似文献   

14.
We have fused the signal anchor sequences of a rat sialyl transferase and a human galactosyl transferase along with the Arabidopsis homologue of the yeast HDEL receptor (AtERD2) to the jellyfish green fluorescent protein (GFP) and transiently expressed the chimeric genes in tobacco leaves. All constructs targeted the Golgi apparatus and co-expression with DsRed fusions along with immunolabelling of stably transformed BY2 cells indicated that the fusion proteins located all Golgi stacks. Exposure of tissue to brefeldin A (BFA) resulted in the reversible redistribution of ST-GFP into the endoplasmic reticulum. This effect occurred in the presence of a protein synthesis inhibitor and also in the absence of microtubules or actin filaments. Likewise, reformation of Golgi stacks on removal of BFA was not dependent on either protein synthesis or the cytoskeleton. These data suggest that ER to Golgi transport in the cell types observed does not require cytoskeletal-based mechanochemical motor systems. However, expression of an inhibitory mutant of Arabidopsis Rab 1b (AtRab1b(N121I) significantly slowed down the recovery of Golgi fluorescence in BFA treated cells indicating a role for Rab1 in regulating ER to Golgi anterograde transport.  相似文献   

15.
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.  相似文献   

16.
The broad dynamic range of protein abundances, which can vary from about 10(6) for cells to 10(10) for tissues in complex proteomes, continues to challenge proteomics research. Proteome analysis, in particular organelle proteomics, using current approaches, requires extensive fractionation, separation, and enrichment. Over the years, organelle separation was achieved through the use of differential and density-gradient ultracentrifugation. However, the traditional fixed-volume process is a time-consuming and labor-intensive method, especially with large quantities of sample. Here, we present a novel tool for subcellular fractionation of biologically complex mixtures: continuous-flow ultracentrifugation of tissue homogenates to obtain both organelle separation and extensive organelle enrichment at the same time. In this study, rat liver tissues from two different age groups (3-8 wk and greater than 1 y old) were homogenized by blending. After removing nuclei, the resulting homogenates were further fractionated at the subcellular level by the use of sucrose gradient continuous-flow ultracentrifugation. Each organelle's enriched fractions were identified by Western blot analysis. To study the possible effects of aging on the endoplasmic reticulum and Golgi apparatus, we compared the organelle protein profiles of the two groups of rat liver tissues using two-dimensional gel electrophoresis, digitized imaging of two-dimensional gel electrophoresis, and mass spectrometry. Significant differences in the protein profiles of both organelles were observed between the two groups of rat tissues. The technique described here for fractionation and enrichment of organelles demonstrated a useful tool for proteomics research, including identification of low-abundance proteins and post-translational modifications.  相似文献   

17.
SNARE proteins control intracellular membrane fusion through formation of membrane-bridging helix bundles of amphipathic SNARE motifs. Repetitive cycles of membrane fusion likely involve repetitive folding/unfolding of the SNARE motif helical structure. Despite these conformational demands, little is known about conformational regulation of SNAREs by other proteins. Here we demonstrate that hsc70 chaperones stimulate in vitro SNARE complex formation among the ER/Golgi SNAREs syntaxin 5, membrin, rbetl and sec22b, under conditions in which assembly is normally inhibited. Thus, molecular chaperones can render the SNARE motif more competent for assembly. Partially purified hsc70 fractions from brain cytosol had higher specific activities than fully purified hsc70, suggesting the involvement of unidentified cofactors. Using chemical crosslinking of cells followed by immunoprecipitation, we found that hsc70 was associated with ER/Golgi SNAREs in vivo. Consistent with a modulatory role for hsc70 in transport, we found that excess hsc70 specifically inhibited ER-to-Golgi transport in permeabilized cells.  相似文献   

18.
Previous experiments with Saccharomyces cerevisiae had suggested that diacylglycerol-containing glycosylphosphatidylinositols (GPIs) are added to newly synthesized proteins in the endoplasmic reticulum (ER) and that ceramides subsequently are incorporated into GPI proteins by lipid remodeling. Here we prove this hypothesis by labeling yeast cells with [3H]dihydrosphingosine ([3H]DHS) and showing that this tracer is incorporated into many GPI proteins even when protein synthesis and, hence, anchor addition, is blocked by cycloheximide. [3H]DHS incorporation is greatly enhanced if endogenous synthesis of DHS is inhibited by myriocin. Labeled GPI anchors contain three types of ceramides which, based on previous and present results, are identified as DHS-C26:0, phytosphingosine-C26:0 and phytosphingosine-C26:0-OH, the latter being found only on proteins which have reached the Golgi. Lipid remodeling can occur both in the ER and in a later secretory compartment. In addition, ceramide is incorporated into GPI proteins a long time after their initial synthesis by a process in which one ceramide gets replaced by another ceramide. Remodeling outside the ER requires vesicular flow from the ER to the Golgi, possibly to supply the remodeling enzymes with ceramides.  相似文献   

19.
Several lines of evidence support a novel model for Golgi protein residency in which these proteins cycle between the Golgi apparatus and the endoplasmic reticulum (ER). However, to preserve the functional distinction between the two organelles, this pool of ER-resident Golgi enzymes must be small. We quantified the distribution for two Golgi glycosyltransferases in HeLa cells to test this prediction. We reasoned that best-practice, quantitative solutions would come from treating images as data arrays rather than pictures. Using deconvolution and computer calculated organellar boundaries, the Golgi fraction for both endogenous beta1,4-galactosyltransferase and UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 fused with green fluorescent protein (GFP) was 91% by fluorescence microscopy. Immunogold labeling followed by electron microscopy and model analysis yielded a similar value. Values reflect steady-state conditions, as inclusion of a protein synthesis inhibitor had no effect. These data strongly suggest that the fluorescence of a GFP chimera with an organellar protein can be a valid indicator of protein distribution and more generally that fluorescent microscopy can provide a valid, rapid approach for protein quantification. In conclusion, we find the ER pool of cycling Golgi glycosyltransferases is small and approximately 1/100 the concentration found in the Golgi apparatus.  相似文献   

20.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号