首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Drosophila embryo, the correct association of muscles with their specific tendon cells is achieved through reciprocal interactions between these two distinct cell types. Tendon cell differentiation is initiated by activation of the EGF-receptor signaling pathway within these cells by Vein, a neuregulin-like factor secreted by the approaching myotube. Here, we describe the cloning and the molecular and genetic analyses of kakapo, a Drosophila gene, expressed in the tendons, that is essential for muscle-dependent tendon cell differentiation. Kakapo is a large intracellular protein and contains structural domains also found in cytoskeletal-related vertebrate proteins (including plakin, dystrophin, and Gas2 family members). kakapo mutant embryos exhibit abnormal muscle-dependent tendon cell differentiation. A major defect in the kakapo mutant tendon cells is the failure of Vein to be localized at the muscle–tendon junctional site; instead, Vein is dispersed and its levels are reduced. This may lead to aberrant differentiation of tendon cells and consequently to the kakapo mutant deranged somatic muscle phenotype.  相似文献   

2.
GIT1-like proteins are GTPase-activating proteins (GAPs) for Arfs and interact with a variety of signaling molecules to function as integrators of pathways controlling cytoskeletal organization and cell motility. In this report, we describe the characterization of a Drosophila homologue of GIT1, dGIT, and show that it is required for proper muscle morphogenesis and myotube guidance in the fly embryo. The dGIT protein is concentrated at the termini of growing myotubes and localizes to muscle attachment sites in late stage embryos. dgit mutant embryos show muscle patterning defects and aberrant targeting in subsets of their muscles. dgit mutant muscles fail to localize the p21-activated kinase, dPak, to their termini. dPak and dGIT form a complex in the presence of dPIX and dpak mutant embryos show similar muscle morphogenesis and targeting phenotypes to that of dgit. We propose that dGIT and dPak are part of a complex that promotes proper muscle morphogenesis and myotube targeting during embryogenesis.  相似文献   

3.

Background and Aims

Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed''s life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides.

Methods

In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos.

Key Results

Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination.

Conclusions

Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.  相似文献   

4.
Microtubules are highly dynamic cellular structures that are required for many biological processes. Cortical microtubules in plant play crucial roles during cell expansion. Its proper dynamics are required for plant growth and responses to environmental stimuli. Arabidopsis mutants, such as sav2/tub4 P287L , display a variety of growth defects, including short and twisting hypocotyls in dark and shade. Both microtubule organization and dynamics are altered in sav2. Here, we have identified a suppressor of sav2 (sus2), which surprisingly contains a missense mutation in another β tubulin gene, TUB6. The mutation results in a L246F substitution in TUB6. It locates at the interface of αβ-intradimer. This mutation partially suppressed the swirling microtubule arrangement in sav2 hypocotyl cells, leading to the partial rescue of sav2 phenotypes. As the mutant behaves as a semi-dominant mutation and the CFP-labeled tub6L246F can incorporate into microtubules, we propose that the incorporation of tub6L246F interferes with the normal function of microtubules. tub6 L246F single mutant is hypersensitive to drugs disrupting microtubule dynamics, such as colchicine, suggesting the mutation may affect microtubule dynamics. Moreover, we found the colchicine hypersensitivity of tub6L246F can be suppressed by tub4P287L, while tub6L246F interferes with the rescuing effect of EB1 on sav2. As P287 locates around M-loop, which is involved in interactions between microtubule protofilaments, we propose that altered interactions at αβ-intradimer interface may affect microtubule dynamics through M-loop mediated interactions between microtubule protofilaments.  相似文献   

5.
Mutations in kakapo were recovered in genetic screens designed to isolate genes required for integrin-mediated adhesion in Drosophila. We cloned the gene and found that it encodes a large protein (>5,000 amino acids) that is highly similar to plectin and BPAG1 over the first 1,000–amino acid region, and contains within this region an α-actinin type actin-binding domain. A central region containing dystrophin-like repeats is followed by a carboxy domain that is distinct from plectin and dystrophin, having neither the intermediate filament-binding domain of plectin nor the dystroglycan/syntrophin-binding domain of dystrophin. Instead, Kakapo has a carboxy terminus similar to the growth arrest–specific protein Gas2. Kakapo is strongly expressed late during embryogenesis at the most prominent site of position-specific integrin adhesion, the muscle attachment sites. It is concentrated at apical and basal surfaces of epidermal muscle attachment cells, at the termini of the prominent microtubule bundles, and is required in these cells for strong attachment to muscles. Kakapo is also expressed more widely at a lower level where it is essential for epidermal cell layer stability. These results suggest that the Kakapo protein forms essential links among integrins, actin, and microtubules.  相似文献   

6.
EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability.  相似文献   

7.
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.  相似文献   

8.

Background

Mutagenesis screens in the mouse have been proven useful for the identification of novel gene functions and generation of interesting mutant alleles. Here we describe a phenotype-based screen for recessive mutations affecting embryonic development.

Methodology/Principal Findings

Mice were mutagenized with N-ethyl-N-nitrosurea (ENU) and following incrossing the offspring, embryos were analyzed at embryonic day 10.5. Mutant phenotypes that arose in our screen include cardiac and nuchal edema, neural tube defects, situs inversus of the heart, posterior truncation and the absence of limbs and lungs. We isolated amongst others novel mutant alleles for Dll1, Ptprb, Plexin-B2, Fgf10, Wnt3a, Ncx1, Scrib(Scrib, Scribbled homolog [Drosophila]) and Sec24b. We found both nonsense alleles leading to severe protein truncations and mutants with single-amino acid substitutions that are informative at a molecular level. Novel findings include an ectopic neural tube in our Dll1 mutant and lung defects in the planar cell polarity mutants for Sec24b and Scrib.

Conclusions/Significance

Using a forward genetics approach, we have generated a number of novel mutant alleles that are linked to disturbed morphogenesis during development.  相似文献   

9.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.  相似文献   

10.
11.
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.  相似文献   

12.

Background and Aims

Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination.

Methods

Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC.

Key Results

During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied.

Conclusions

The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.  相似文献   

13.
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The Caenorhabditis elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by postdevelopmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants’ neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance and may help decipher processes that go awry in some neurodegenerative conditions.  相似文献   

14.
Bone morphogenic protein (BMP) signaling is crucial for coordinated synaptic growth and plasticity. Here, we show that the nuclear LEM-domain protein MAN1 is a negative regulator of synaptic growth at Drosophila larval and adult neuromuscular junctions (NMJs). Loss of MAN1 is associated with synaptic structural defects, including floating T-bars, membrane attachment defects, and accumulation of vesicles between perisynaptic membranes and membranes of the subsynaptic reticulum. In addition, MAN1 mutants accumulate more heterogeneously sized vesicles and multivesicular bodies in larval and adult synapses, the latter indicating that MAN1 may function in synaptic vesicle recycling and endosome-to-lysosome trafficking. Synaptic overgrowth in MAN1 is sensitive to BMP signaling levels, and loss of key BMP components attenuate BMP-induced synaptic overgrowth. Based on these observations, we propose that MAN1 negatively regulates accumulation and distribution of BMP signaling components to ensure proper synaptic growth and integrity at larval and adult NMJs.  相似文献   

15.
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins.  相似文献   

16.
The chromodomain protein, Chromator, has been shown to have multiple functions that include regulation of chromatin structure as well as coordination of muscle remodeling during metamorphosis depending on the developmental context. In this study we show that mitotic neuroblasts from brain squash preparations from larvae heteroallelic for the two Chromator loss-of-function alleles Chro71 and Chro612 have severe microtubule spindle and chromosome segregation defects that were associated with a reduction in brain size. The microtubule spindles formed were incomplete, unfocused, and/or without clear spindle poles and at anaphase chromosomes were lagging and scattered. Time-lapse analysis of mitosis in S2 cells depleted of Chromator by RNAi treatment suggested that the lagging and scattered chromosome phenotypes were caused by incomplete alignment of chromosomes at the metaphase plate, possibly due to a defective spindle-assembly checkpoint, as well as of frayed and unstable microtubule spindles during anaphase. Expression of full-length Chromator transgenes under endogenous promoter control restored both microtubule spindle morphology as well as brain size strongly indicating that the observed mutant defects were directly attributable to lack of Chromator function.  相似文献   

17.
18.
The swallow gene of Drosophila is required for the localization of two messenger RNAs, bicoid and hu-li tai shao, to the anterior pole of oocytes during the later stages of oogenesis. In addition, swallow appears to play a role in early embryogenesis, as swallow mutant embryos have defects in early nuclear cleavage and migration. In an effort to identify regions of the Swallow protein that are essential for function, we have initiated a molecular characterization of seven existing alleles of swallow. All seven alleles have been sequenced, and comparison to wild-type swallow indicates that the seven alleles include single amino acid substitutions that identify critical residues, as well as lesions that result in truncated proteins. Western blots using affinity-purified antibodies agree well with the DNA sequence data, and identify a probable null protein. In order to determine the extent to which each allele affects swallow function, females homozygous or hemizygous for each allele were tested for the range and abundance of (1) RNA localization defects, and (2) embryonic cuticular defects. Swallow alleles can be grouped into two categories: those that retain partial function, and those indistinguishable from the putative null allele. Some swallow mutant alleles partially rescue the dominant female sterility of mutations in the atypical 67C -tubulin gene, supporting other studies that suggest a link between RNA localization and the microtubule cytoskeleton.Edited by C. Desplan  相似文献   

19.

Background and Aims

The order Piperales has the highest diversity of growth forms among the earliest angiosperm lineages, including trees, shrubs, climbers and herbs. However, within the perianth-bearing Piperales (Asarum, Saruma, Lactoris, Hydnora, Prosopanche, Thottea and Aristolochia), climbing species only occur in the most species-rich genus Aristolochia. This study traces anatomical and morphological traits among these lineages, to detect trends in growth form evolution and developmental processes.

Methods

Transverse stem sections of different developmental stages of representatives of Asarum, Saruma, Lactoris, Hydnora, Thottea and Aristolochia were compared and anatomical traits were linked to growth form evolution. Biomechanical properties of representative climbers were determined in three-point bending tests and are discussed based on the anatomical observations. Growth form evolution of the perianth-bearing Piperales was reconstructed by ancestral character state reconstruction using Mesquite.

Key Results

While species of Asarum and Saruma are exclusively herbaceous, species of the remaining genera show a higher diversity of growth habit and anatomy. This growth form diversity is accompanied by a more complex stem anatomy and appropriate biomechanical properties. The ancestral growth form of the perianth-bearing Piperales is reconstructed with either a shrub-like or herbaceous character state, while the following three backbone nodes in the reconstruction show a shrub-like character state. Accordingly, the climbing habit most probably evolved in the ancestor of Aristolochia.

Conclusions

Since the ancestor of the perianth-bearing Piperales has been reconstructed with a herb- or shrub-like habit, it is proposed that the climbing habit is a derived growth form, which evolved with the diversification of Aristolochia, and might have been a key feature for its diversification. Observed anatomical synapomorphies, such as the perivascular fibres in Lactoris, Thottea and Aristolochia, support the phylogenetic relationship of several lineages within the perianth-bearing Piperales. In addition, the hypothesis that the vegetative organs of the holoparasitic Hydnoraceae are most probably rhizomes is confirmed.  相似文献   

20.
We have identified EMS-induced mutations in Drosophila Miro (dMiro), an atypical mitochondrial GTPase that is orthologous to human Miro (hMiro). Mutant dmiro animals exhibit defects in locomotion and die prematurely. Mitochondria in dmiro mutant muscles and neurons are abnormally distributed. Instead of being transported into axons and dendrites, mitochondria accumulate in parallel rows in neuronal somata. Mutant neuromuscular junctions (NMJs) lack presynaptic mitochondria, but neurotransmitter release and acute Ca2+ buffering is only impaired during prolonged stimulation. Neuronal, but not muscular, expression of dMiro in dmiro mutants restored viability, transport of mitochondria to NMJs, the structure of synaptic boutons, the organization of presynaptic microtubules, and the size of postsynaptic muscles. In addition, gain of dMiro function causes an abnormal accumulation of mitochondria in distal synaptic boutons of NMJs. Together, our findings suggest that dMiro is required for controlling anterograde transport of mitochondria and their proper distribution within nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号