首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whitfield J  Neame SJ  Paquet L  Bernard O  Ham J 《Neuron》2001,29(3):629-643
Sympathetic neurons require nerve growth factor for survival and die by apoptosis in its absence. Key steps in the death pathway include c-Jun activation, mitochondrial cytochrome c release, and caspase activation. Here, we show that neurons rescued from NGF withdrawal-induced apoptosis by expression of dominant-negative c-Jun do not release cytochrome c from their mitochondria. Furthermore, we find that the mRNA for BIM(EL), a proapoptotic BCL-2 family member, increases in level after NGF withdrawal and that this is reduced by dominant-negative c-Jun. Finally, overexpression of BIM(EL) in neurons induces cytochrome c redistribution and apoptosis in the presence of NGF, and neurons injected with Bim antisense oligonucleotides or isolated from Bim(-/-) knockout mice die more slowly after NGF withdrawal.  相似文献   

2.
To examine whether multiple pathways of cell death exist in sympathetic neurons, we studied the cell death pathway induced by staurosporine (STS) in sympathetic neurons and compared it with the well-characterized NGF deprivation-induced death pathway. Increasing concentrations of STS were found to induce sympathetic neuronal death with different biochemical and morphological characteristics. One hundred nM STS induced metabolic changes, loss of cytochrome c, and caspase-dependent morphological degeneration which closely resembled the apoptotic death induced by NGF deprivation. In contrast, sympathetic neurons treated with 1 microM STS showed no loss of cytochrome c but exhibited extensive, caspase-independent, chromatin changes that were not TUNEL positive. One microM STS-treated sympathetic neurons had greatly reduced metabolic activities and became committed to die rapidly, yet maintained soma structure and appeared viable by other criteria even up to 48 h after STS treatment, illustrating the need to assess cell death by multiple criteria. Lastly, in contrast to the cell death-inducing activities of 100 nM STS or 1 microM STS, very low concentrations of STS (1 nM STS) inhibited sympathetic neuronal death by acting either at or prior to c-jun phosphorylation in the NGF deprivation-induced PCD pathway.  相似文献   

3.
M/KCNQ currents play a critical role in the determination of neuronal excitability. Many neurotransmitters and peptides modulate M/KCNQ current and neuronal excitability through their G protein-coupled receptors. Nerve growth factor (NGF) activates its receptor, a member of receptor tyrosine kinase (RTK) superfamily, and crucially modulates neuronal cell survival, proliferation, and differentiation. In this study, we studied the effect of NGF on the neuronal (rat superior cervical ganglion, SCG) M/KCNQ currents and excitability. As reported before, subpopulation SCG neurons with distinct firing properties could be classified into tonic, phasic-1, and phasic-2 neurons. NGF inhibited M/KCNQ currents by similar proportion in all three classes of SCG neurons but increased the excitability only significantly in tonic SCG neurons. The effect of NGF on excitability correlated with a smaller M-current density in tonic neurons. The present study indicates that NGF is an M/KCNQ channel modulator and the characteristic modulation of the neuronal excitability by NGF may have important physiological implications.  相似文献   

4.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

5.
We have previously shown that nerve growth factor (NGF) withdrawal-induced death requires the activity of the small GTP-binding protein Cdc42 and that overexpression of an active form of Cdc42 is sufficient to mediate neuronal apoptosis via activation of the c-Jun pathway. Recently, a new mitogen-activated protein (MAP) kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1) which activates both the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and plays pivotal roles in tumor necrosis factor- and Fas-induced apoptosis, has been identified. Therefore, we investigated the role of ASK1 in neuronal apoptosis by using rat pheochromocytoma (PC12) neuronal cells and primary rat sympathetic neurons (SCGs). Overexpression of ASK1-DeltaN, a constitutively active mutant of ASK1, activated JNK and induced apoptosis in differentiated PC12 cells and SCG neurons. Moreover, in differentiated PC12 cells, NGF withdrawal induced a four- to fivefold increase in the activity of endogenous ASK1. Finally, expression of a kinase-inactive ASK1 significantly blocked both NGF withdrawal- and Cdc42-induced death and activation of c-jun. Taken together, these results demonstrate that ASK1 is a crucial element of NGF withdrawal-induced activation of the Cdc42-c-Jun pathway and neuronal apoptosis.  相似文献   

6.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

7.
In postmitotic sympathetic neurons, unlike most mitotic cells, death by apoptosis requires not only the release of cytochrome c from the mitochondria, but also an additional step to relieve X-linked inhibitor of apoptosis protein (XIAP)'s inhibition of caspases. Here, we examined the mechanism by which XIAP is inactivated following DNA damage and found that it is achieved by a mechanism completely different from that following apoptosis by nerve growth factor (NGF) deprivation. NGF deprivation relieves XIAP by selectively degrading it, whereas DNA damage overcomes XIAP via a p53-mediated induction of Apaf-1. Unlike wild-type neurons, p53-deficient neurons fail to overcome XIAP and remain resistant to cytochrome c after DNA damage. Restoring Apaf-1 induction in p53-deficient neurons is sufficient to overcome XIAP and sensitize cells to cytochrome c. Although a role for p53 in apoptosis upstream of cytochrome c release has been well established, this study uncovers an additional, essential role for p53 in regulating caspase activation downstream of mitochondria following DNA damage in neurons.  相似文献   

8.
It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor‐α (TNF‐α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA‐challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA‐induced p65 acetylation, resulting in reduced TNF‐α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS‐challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF‐α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF‐α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA‐induced astrocytic TNF‐α release and ameliorated inflammation‐induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.  相似文献   

9.
Redistribution of cytochrome c and Smac/DIABLO from mitochondria occurs during apoptosis, although the relative timing of their release is not well characterized. Double immunocytochemistry was utilized here to study quantitatively the patterns of release of cytochrome c and Smac/DIABLO from mitochondria in single cells. Human osteosarcoma cells and murine embryonic cortical neurons were analyzed during apoptosis induced by staurosporine. In osteosarcoma cells treated with staurosporine for 24 h, a substantial proportion of cells (36%) released cytochrome c from the mitochondria before Smac/DIABLO. In contrast, these proteins were released mostly concordantly in neurons; only a minority of cells (< or = 15%) released cytochrome c without Smac/DIABLO (or vice versa) from mitochondria. Patterns of release in either cell type were unaltered by addition of the caspase inhibitor, zVAD-fmk. The double immunocytochemistry procedure facilitated clear definition of the temporal release of cytochrome c and Smac/DIABLO from mitochondria in intact apoptotic cells, enabling us to demonstrate for the first time that their mutual redistribution during apoptosis varies between different cell types.  相似文献   

10.
Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined by 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-3β were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF) and ±dP/dt. GSRd reduced myocardial infarct size, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 µM) inhibited SI/R-induced ROS generation (P<0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3, increased the phosphorylated Akt and GSK-3β, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway.  相似文献   

11.
Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer''s Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD.  相似文献   

12.
Nerve growth factor (NGF) deprivation induces a Bax-dependent, caspase-dependent programmed cell death in sympathetic neurons. We examined whether the release of cytochrome c was accompanied by the loss of mitochondrial membrane potential during sympathetic neuronal death. NGF- deprived, caspase inhibitor-treated mouse sympathetic neurons maintained mitochondrial membrane potential for 25-30 h after releasing cytochrome c. NGF- deprived sympathetic neurons became committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. In the presence of caspase inhibitor, however, this commitment to death was extended beyond the point of cytochrome c release, but only up to the subsequent point of mitochondrial membrane potential loss. Caspase-9 deficiency also arrested NGF-deprived sympathetic neurons after release of cytochrome c, and permitted these neurons to be rescued with NGF readdition. Commitment to death in the NGF-deprived, caspase- 9-deficient sympathetic neurons was also coincident with the loss of mitochondrial membrane potential. Thus, caspase inhibition extended commitment to death in trophic factor-deprived sympathetic neurons and allowed recovery of neurons arrested after the loss of cytochrome c, but not beyond the subsequent loss of mitochondrial membrane potential.  相似文献   

13.
Abstract. To determine whether the p75 neurotrophin receptor (p75NTR) plays a role in naturally occurring neuronal death, we examined neonatal sympathetic neurons that express both the TrkA tyrosine kinase receptor and p75NTR. When sympathetic neuron survival is maintained with low quantities of NGF or KCl, the neurotrophin brain-derived neurotrophic factor (BDNF), which does not activate Trk receptors on sympathetic neurons, causes neuronal apoptosis and increased phosphorylation of c-jun. Function-blocking antibody studies indicate that this apoptosis is due to BDNF-mediated activation of p75NTR. To determine the physiological relevance of these culture findings, we examined sympathetic neurons in BDNF−/− and p75NTR−/− mice. In BDNF−/− mice, sympathetic neuron number is increased relative to BDNF+/+ littermates, and in p75NTR−/− mice, the normal period of sympathetic neuron death does not occur, with neuronal attrition occurring later in life. This deficit in apoptosis is intrinsic to sympathetic neurons, since cultured p75NTR−/− neurons die more slowly than do their wild-type counterparts. Together, these data indicate that p75NTR can signal to mediate apoptosis, and that this mechanism is essential for naturally occurring sympathetic neuron death.  相似文献   

14.
Nerve growth factor (NGF) serves a critical survival-promoting function for developing sympathetic neurons. Following removal of NGF, sympathetic neurons undergo apoptosis characterized by the activation of c-Jun N-terminal kinases (JNKs), up-regulation of BH3-only proteins including BcL-2-interacting mediator of cell death (BIM)EL, release of cytochrome c from mitochondria, and activation of caspases. Here we show that two small-molecule prolyl hydroxylase inhibitors frequently used to activate hypoxia-inducible factor (HIF) – ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) – can inhibit apoptosis caused by trophic factor deprivation. Both DHB and DMOG blocked the release of cytochrome c from mitochondria after NGF withdrawal, whereas only DHB blocked c-Jun up-regulation and phosphorylation. DHB, but not DMOG, also attenuated the induction of BIMEL in NGF-deprived neurons, suggesting a possible mechanism whereby DHB could inhibit cytochrome c release. DMOG, on the other hand, was substantially more effective at stabilizing HIF-2α and inducing expression of the HIF target gene hexokinase 2 than was DHB. Thus, while HIF prolyl hydroxylase inhibitors can delay cell death in NGF-deprived neurons, they do so through distinct mechanisms that, at least in the case of DHB, are partly independent of HIF stabilization.  相似文献   

15.
Although the adult heart likely retains some regenerative capacity, heart failure (HF) typically remains a progressive disorder. We hypothesise that alterations in the local environment contribute to the failure of regeneration in HF. Previously we showed that nerve growth factor (NGF) is deficient in the failing heart and here we hypothesise that diminished NGF limits the cardiac regenerative response in HF. The capacity of NGF to augment cardiac regeneration was tested in a zebrafish model of HF. Cardiac injury with a HF phenotype was induced in zebrafish larvae at 72 hours post fertilization (hpf) by exposure to aristolochic acid (AA, 2.5 µM, 72–75 hpf). By 168 hpf, AA induced HF and death in 37.5% and 20.8% of larvae respectively (p<0.001). NGF mRNA expression was reduced by 42% (p<0.05). The addition of NGF (50 ng/ml) after exposure to AA reduced the incidence of HF by 50% (p<0.01) and death by 65% (p<0.01). Mechanistically, AA mediated HF was characterised by reduced cardiomyocyte proliferation as reflected by a 6.4 fold decrease in BrdU+ cardiomyocytes (p<0.01) together with features of apoptosis and loss of cardiomyocytes. Following AA exposure, NGF increased the abundance of BrdU+ cardiomyocytes in the heart by 4.8 fold (p<0.05), and this was accompanied by a concomitant significant increase in cardiomyocyte numbers. The proliferative effect of NGF on cardiomyocytes was not associated with an anti-apoptotic effect. Taken together the study suggests that NGF stimulates a regenerative response in the failing zebrafish heart, mediated by stimulation of cardiomyocyte proliferation.  相似文献   

16.
17.
Selective vulnerability of particular groups of neurons is a characteristic of the aging nervous system. We have studied the role of neurotrophin (NT) signalling in this phenomenon using rat sympathetic (SCG) neurons projecting to cerebral blood vessels (CV) and iris which are, respectively, vulnerable to and protected from atrophic changes during old age. RT-PCR was used to examine NT expression in iris and CV in 3- and 24-month-old rats. NGF and NT3 expression in iris was substantially higher compared to CV; neither target showed any alterations with age. RT-PCR for the principal NT receptors, trkA and p75, in SCG showed increased message during early postnatal life. However, during mature adulthood and old age, trkA expression remained stable while p75 declined significantly over the same period. In situ hybridization was used to examine receptor expression in subpopulations of SCG neurons identified using retrograde tracing. Eighteen to 20 h following local treatment of iris and CV with NGF, NT3 or vehicle, expression of NT receptor protein and mRNA was higher in iris- compared with CV-projecting neurons from both young and old rats. NGF and NT3 treatment had no effect on NT receptor expression in CV-projecting neurons at either age. However, similar treatment up-regulated p75 and trkA expression in iris-projecting neurons from 3-month-old, but not 24-month-old, rats. We conclude that lifelong exposure to low levels of NTs combined with impaired plasticity of NT receptor expression are predictors of neuronal vulnerability to age-related atrophy.  相似文献   

18.
Nerve growth factor (NGF) is critical for the differentiation and maintenance of neurons in the peripheral and central nervous system. Sustained autophosphorylation of the TrkA receptor tyrosine kinase and long-lasting activation of downstream kinase cascades are hallmarks of NGF signaling, yet our knowledge of the molecular mechanisms underlying prolonged TrkA activity is incomplete. Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase composed of a scaffolding, catalytic, and regulatory subunit (B, B′, and B" gene families). Here, we employ a combination of pharmacological inhibitors, regulatory subunit overexpression, PP2A scaffold subunit exchange, and RNA interference to show that PP2A containing B′ family regulatory subunits participates in sustained NGF signaling in PC12 cells. Specifically, two neuron-enriched regulatory subunits, B′β and B′δ, recruit PP2A into a complex with TrkA to dephosphorylate the NGF receptor on Ser/Thr residues and to potentiate its intrinsic Tyr kinase activity. Acting at the receptor level, PP2A/ B′β and B′δ enhance NGF (but not epidermal growth factor or fibroblast growth factor) signaling through the Akt and Ras-mitogen-activated protein kinase cascades and promote neuritogenesis and differentiation of PC12 cells. Thus, select PP2A heterotrimers oppose desensitization of the TrkA receptor tyrosine kinase, perhaps through dephosphorylation of inhibitory Ser/Thr phosphorylation sites on the receptor itself, to maintain neurotrophin-mediated developmental and survival signaling.  相似文献   

19.
Sympathetic neuronal death induced by nerve growth factor (NGF) deprivation requires the macromolecular synthesis-dependent translocation of BAX from the cytosol to mitochondria and its subsequent integration into the mitochondrial outer membrane, followed by BAX-mediated cytochrome c (cyt c) release. The gene products triggering this process remain unknown. Here, we report that BIM, a member of the BH3-only proapoptotic subfamily of the BCL-2 protein family, is one such molecule. NGF withdrawal induced expression of BIM(EL), an integral mitochondrial membrane protein that functions upstream of (or in parallel with) the BAX/BCL-2 and caspase checkpoints. Bim deletion conferred protection against developmental and induced neuronal apoptosis in both central and peripheral populations, but only transiently, suggesting that BIM--and perhaps other BH3-only proteins--serve partially redundant functions upstream of BAX-mediated cyt c release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号