首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Enzymes expressed in response to vinyl chloride, ethene, and epoxyethane by Nocardioides sp. strain JS614 were identified by using a peptide mass fingerprinting (PMF) approach. PMF provided insight concerning vinyl chloride biodegradation in strain JS614 and extends the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry as a tool to enhance characterization of biodegradation pathways.  相似文献   

2.
3.
4.
Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.  相似文献   

5.
Applied Microbiology and Biotechnology - Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy...  相似文献   

6.
Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day(-1)), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day(-1)), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (K(s)) values for VC were between 0.5 and 3.2 micro M, while K(s) values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC.  相似文献   

7.
Nocardioides sp. strain JS614 grows on the C2 alkenes ethene (Eth), vinyl chloride, and vinyl fluoride as sole carbon sources. The presence of 400–800 μM ethene oxide (EtO) extended the growth substrate range to propene (C3) and butene (C4). Propene-dependent growth of JS614 was CO2 dependent and was prevented by the carboxylase/reductase inhibitor 2-bromoethanesulfonic acid, sodium salt (BES), while growth on Eth was not CO2 dependent or BES sensitive. Although unable to promote growth, both propene and propene oxide (PrO)-induced expression of the genes encoding the alpha subunit of alkene monooxygenase (etnC) and epoxyethane CoM transferase (etnE) to similar levels as did Eth and EtO. Propene was transformed by Eth-grown and propene-grown/EtO-induced JS614 to PrO at a rate 4.2 times faster than PrO was consumed. As a result PrO accumulated in growth medium to 900 μM during EtO-induced growth on propene. PrO (50–100 μM) exerted inhibitory effects on growth of JS614 on both acetate and Eth, and on EtO-induced growth on Eth. However, higher EtO concentrations (300–400 μM) overcame the negative effects of PrO on Eth-dependent growth.  相似文献   

8.
Enantiopure epoxides are valuable intermediates in the synthesis of optically pure biologically active fine chemicals (e.g., pharmaceuticals) that are often difficult to produce by chemical approaches. An attractive alternative is biological synthesis by microorganisms expressing stereoselective enzymes. In this study, we investigated the ability of ethene-grown Nocardioides sp. strain JS614 to produce highly enantio-enriched epoxyalkanes via stereoselective monooxygenase-mediated alkene epoxidation. Ethene-grown JS614 cells transformed propene, 1-butene, and trans-2-butene to their corresponding epoxyalkanes at rates ranging from 27.1 to 44.0 nmol/min mg protein. Chiral gas chromatography analysis revealed that R-1,2-epoxypropane, R-1,2-epoxybutane, and trans-2R,3R-epoxybutane were produced in enantiomeric excess (e.e.) of 98%, 74%, and 82%, respectively. Ethene-grown JS614 cells also preferentially transformed trans-2S,3S-epoxybutane from a racemic mixture, but could not resolve racemic 1,2-epoxypropane. Glucose facilitated increased epoxyalkane production by ethene-grown JS614 cells. However, after 22 h of propene biotransformation with 20 mM glucose, 84% of ethene-grown JS614 cells lost membrane integrity and the remaining live cells were not viable. Propene biotransformation by JS614 was extended beyond 22 h and 54% more epoxypropane was produced when cells were resuspended in fresh buffer + glucose at 8-h intervals. We conclude that JS614 is a promising new biocatalyst for applications that involve enantiopure epoxide production.  相似文献   

9.
The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.  相似文献   

10.
A bacterial strain capable of utilizing 2-methylphenanthrene (2-MP) as its sole source of carbon and energy for growth was isolated from creosote contaminated soil. The isolate was identified as a strain of Sphingomonas sp. and was designated strain JS5. Utilization of 2-MP by strain JS5 was demonstrated by an increase in bacterial biomass concomitant with a decrease of 2-MP in liquid mineral medium with this compound as sole source of carbon and energy. Growth yield indicated a 23% assimilation of 2-MP carbon. Washed-cell suspensions of strain JS5 incubated with 2-MP accumulated a major metabolite identified as 1-hydroxy-6-methyl-2-naphtoic acid, according to its UV, mass and NMR spectra, and a minor compound with HPLC R t and UV spectrum indistinguishable from 5-methylsalicylate. The identification of those metabolites, and the demonstration of 2,3-catechol dioxygenase activity in 2-MP induced cells show that the biodegradation of 2-MP by strain JS5 is initiated via dioxygenation and meta-cleavage of the non-methylated aromatic ring, and then proceeds by reactions similar to those reported for phenanthrene. Incubation of the strain with a MP-containing mixture from a pyrolytic fuel oil demonstrates that strain JS5 also acts on other methylated phenanthrenes. Received: 28 December 1998 / Received revision: 21 June 1999 / Accepted: 27 June 1999  相似文献   

11.
An aerobic bacterium capable of growth on cis-dichloroethene (cDCE) as a sole carbon and energy source was isolated by enrichment culture. The 16S ribosomal DNA sequence of the isolate (strain JS666) had 97.9% identity to the sequence from Polaromonas vacuolata, indicating that the isolate was a beta-proteobacterium. At 20 degrees C, strain JS666 grew on cDCE with a minimum doubling time of 73 +/- 7 h and a growth yield of 6.1 g of protein/mol of cDCE. Chloride analysis indicated that complete dechlorination of cDCE occurred during growth. The half-velocity constant for cDCE transformation was 1.6 +/- 0.2 microM, and the maximum specific substrate utilization rate ranged from 12.6 to 16.8 nmol/min/mg of protein. Resting cells grown on cDCE could transform cDCE, ethene, vinyl chloride, trans-dichloroethene, trichloroethene, and 1,2-dichloroethane. Epoxyethane was produced from ethene by cDCE-grown cells, suggesting that an epoxidation reaction is the first step in cDCE degradation.  相似文献   

12.
13.
The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.  相似文献   

14.
Aerobic biodegradation of vinyl chloride in groundwater samples   总被引:1,自引:0,他引:1  
Studies were conducted to examine the biodegradation of 14C-labeled vinyl chloride in samples taken from a shallow aquifer. Under aerobic conditions, vinyl chloride was readily degraded, with greater than 99% of the labeled material being degraded after 108 days and approximately 65% being mineralized to 14CO2.  相似文献   

15.
Aerobic biodegradation of vinyl chloride in groundwater samples.   总被引:4,自引:3,他引:1       下载免费PDF全文
Studies were conducted to examine the biodegradation of 14C-labeled vinyl chloride in samples taken from a shallow aquifer. Under aerobic conditions, vinyl chloride was readily degraded, with greater than 99% of the labeled material being degraded after 108 days and approximately 65% being mineralized to 14CO2.  相似文献   

16.
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

17.
Aerobic vinyl chloride metabolism in Mycobacterium aurum L1.   总被引:3,自引:1,他引:2       下载免费PDF全文
Mycobacterium aurum L1, capable of growth on vinyl chloride as a sole carbon and energy source, was previously isolated from soil contaminated with vinyl chloride (S. Hartmans et al., Biotechnol. Lett. 7:383-388, 1985). The initial step in vinyl chloride metabolism in strain L1 is catalyzed by alkene monooxygenase, transforming vinyl chloride into the reactive epoxide chlorooxirane. The enzyme responsible for chlorooxirane degradation appeared to be very unstable and thus hampered the characterization of the second step in vinyl chloride metabolism. Dichloroethenes are also oxidized by vinyl chloride-grown cells of strain L1, but they are not utilized as growth substrates. Three additional bacterial strains which utilize vinyl chloride as a sole carbon and energy source were isolated from environments with no known vinyl chloride contamination. The three new isolates were similar to strain L1 and were also identified as Mycobacterium aurum.  相似文献   

18.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

19.
An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.  相似文献   

20.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号