首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Capsella bursa-pastoris is one of the most common plants on earth. Although phenotypic plasticity of ecologically important traits possibly contributes to its wide geographic range, little is known about the plasticity of C. bursa-pastoris and its effects on its fitness. In a laboratory, we assessed the phenotypic plasticity in response to two representative climatic conditions: temperature and soil moisture. In addition, we quantitatively evaluated the relationship between phenotypic plasticity and fruit production. Most measured morphological and physiological traits exhibited plastic responses to temperature and fitness based on fruit production was maintained across temperatures. In contrast, no plasticity to soil moisture was detected, and plants produced fewer fruits in dry soil. Selection analysis revealed that the plasticity of the flowering time and the water-use efficiency had positive effects on fruit production over the tested temperature regime. These experimental results suggest that phenotypic plasticity probably enables C. bursa-pastoris to cope with heterogeneous temperature environments and thereby probably contributes to its wide geographic range.  相似文献   

2.
荠菜LEAFY同源基因的克隆与进化分析   总被引:4,自引:0,他引:4  
LEAFY同源基因是高等植物花的分生组织分化的重要调节基因。根据已发表的LEAFY同源基因序列保守区设计引物,以荠菜(Capsellabursa-pastoris(L.)Medic.)基因组DNA序列为模板,克隆了一条长2866bp的LEAFY同源基因。序列分析表明,该基因含有3个外显子和2个内含子,外显子编码424个氨基酸组成的多肽。其单个外显子核苷酸序列与拟南芥(Arabidopsisthaliana)LEAFY基因同源性在90%以上,氨基酸序列同源性为86%,而与琴叶拟南芥(Ara-bidopsislyrata)的氨基酸序列同源性高达90%。不同植物物种的LEAFY同源氨基酸序列在C端高度保守,而N端则有较大程度的变异。3个外显子进化速率不同可能是由于所受选择压力不同所致。存在于荠菜CapLFY基因346位上的精氨酸突变可能是造成荠菜两种生态型花期不同的原因。  相似文献   

3.

Background and Aims

The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd''s purse.

Methods

Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy.

Key Results

Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds.

Conclusions

In shepherd''s purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.  相似文献   

4.
Neuffer B  Hurka H 《Molecular ecology》1999,8(10):1667-1681
Multilocus isozyme genotypic composition for aspartate aminotransferase (AAT), leucine aminopeptidase (LAP) and glutamate dehydrogenase (GDH) was studied for Capsella in the source continent, Europe (9000 plants from 593 populations), and in the colonized continent, North America (2700 plants from 88 populations). North America was depauperate in the number of genotypes (by approximately 50%), but in terms of frequencies, a few genotypes were common and shared by both continents. Although some, very rare, genotypes were, however, unique for North America, our data provided no evidence to indicate that the introduced gene pools were reconstructed on a multilocus genetic basis after introduction. Instead, they argued for a considerable number of independent introduction events. Geographical distribution patterns of multilocus genotypes in Europe and North America were pronounced and enabled us to trace the colonization history of Californian Capsella back to Spanish ancestral populations and those of temperate North America back to temperate European gene pools. A random-block field experiment with 14 Californian populations from different climatic regions revealed that variation patterns of quantitative traits reflect ecotypic variation, and the ecological amplitude of Capsella in North America is similar to that in Europe, which can be traced back to the introduction of preadapted genotypes. It appears that certain multilocus isozyme genotypes are associated with certain ecotypes. The variable European gene pool of Capsella was essentially introduced into North America without major genetic changes.  相似文献   

5.
Apart from the common floral architecture in Brassicaceae, variation in flower morphology occurs in several genera within the family and is considered to affect speciation processes. We analysed genetic differentiation and flowering time variation of two floral variants of Capsella bursa-pastoris , the Spe variant and the wild-type, which occur sympatrically in a vineyard in southwest Germany. The Spe variant is characterized by an additional whorl of stamens instead of petals and was formerly classified as an independent taxon ' Capsella apetala ' Opiz. Amplified fragment length polymorphism and allozyme analysis revealed a substantial genetic differentiation of the two floral variants and a higher genetic variation within the wild-type subpopulation compared with the Spe subpopulation. The low genetic variation in the mutant provided evidence of a recent local origin or recent introduction. Flowering time analysis indicated that, within the analysed population, the Spe variant flowers significantly later than the wild-type ( P  < 0.001). We conclude that the evolution and persistence of Spe within a wild-type population is facilitated by high selfing rates and been enhanced by a shift in flowering phenology. Hence, our data provide substantial evidence that the Spe phenotype has established itself as an isolated entity within a wild-type population and may thus serve as a model for the analysis of the evolutionary significance of homeotic mutants in wild populations.  相似文献   

6.
The evolutionary history of the common chloroplast (cp) genome of the allotetraploid Arabidopsis suecica and its maternal parent A. thaliana was investigated by sequencing 50 fragments of cpDNA, resulting in 98 polymorphic sites. The variation in the A. suecica sample was small, in contrast to that of the A. thaliana sample. The time to the most recent common ancestor (T(MRCA)) of the A. suecica cp genome alone was estimated to be about one 37th of the T(MRCA) of both the A. thaliana and A. suecica cp genomes. This corresponds to A. suecica having a MRCA between 10 000 and 50 000 years ago, suggesting that the entire species originated during, or before, this period of time, although the estimates are sensitive to assumptions made about population size and mutation rate. The data was also consistent with the hypothesis of A. suecica being of single origin. Isolation-by-distance and population structure in A. thaliana depended upon the geographical scale analysed; isolation-by-distance was found to be weak on the global scale but locally pronounced. Within the genealogical cp tree of A. thaliana, there were indications that the root of the A. suecica species is located among accessions of A. thaliana that come primarily from central Europe. Selective neutrality of the cp genome could not be rejected, despite the fact that it contains several completely linked protein-coding genes.  相似文献   

7.
Edh K  Widén B  Ceplitis A 《Molecular ecology》2007,16(23):4972-4983
Nuclear and chloroplast microsatellite markers were used to study population structure and gene flow among seven Cretan populations of the Aegean endemic plant species Brassica cretica (Brassicaceae). Both nuclear and chloroplast markers revealed exceptionally high levels of population differentiation (overall F(ST)=0.628 and 1.000, respectively) and relatively little within-population diversity (overall H(S)=0.211 and 0.000, respectively). Maximum-likelihood estimates of directional migration rates were low among all pairs of populations (average Nm=0.286). There was no evidence that differences in flower colour between populations had any influence on historical levels of gene flow. In addition, a haplotype network showed that all five chloroplast haplotypes found in the sample were closely related. Together, these results suggest that current patterns of diversification in B. cretica are mainly a result of genetic drift during the last half million years. The main conclusions from the present study are consistent with the prevailing hypothesis that plant diversification in the Aegean region is driven by random rather than adaptive differentiation among isolated populations.  相似文献   

8.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

9.
Attempts to design truly universal primers to amplify chloroplast microsatellites have met with limited success due to nonconservation of repeat loci across widely divergent taxa. We have used the complete chloroplast genome sequences of rice, maize and wheat to design five pairs of primers that amplify homologous mononucleotide repeats across the Poaceae (grasses). Sequencing confirmed conservation of repeat motifs across subfamilies and a preliminary study in Anthoxanthum odoratum revealed polymorphism at two loci with a haplotype diversity value of 0.495. These primers provide a valuable tool to study cytoplasmic diversity in this extensively studied and economically important range of taxa.  相似文献   

10.
Psilopeganum sinense is a perennial herb endemic to Three-Gorges Reservoir Area (TGRA) in China. Genetic diversity of this endangered species was assessed by using 11 nuclear microsatellites and three chloroplast microsatellite (cpSSR) markers. A total of 8 haplotypes were identified in a survey of 212 individuals sampled from nine populations encompassing most of the natural range of the species. A low level of genetic diversity was detected: HE = 0.301 for SSR and HE = 0.28 for cpSSR. Populations were highly differentiated from one another: an AMOVA analysis that showed that 56.3% and 68.2% genetic variation resided between populations based on SSR and cpSSR analysis, respectively, and FST and FSTc (0.467 for SSR and 0.644 for cpSSR, respectively) were high. Significant differences were found between estimates of haplotypic differentiation calculated by using unordered alleles (GSTc = 0.857) and ordered alleles (NSTc = 0.728), which indicated the existence of phylogeographical structure in P. sinense. The indirect ratio of pollen flow/seed flow derived from estimates of haplotypic and nuclear DNA differentiation indicated that gene flow via pollen is less efficient than via seed. Two distinct evolutionary lineages (evolutionary significant units, ESUs) were recognized for P. sinense on the basis of both the PCoA and NCA analysis. Sampling strategies for conserving this endangered plant were discussed.  相似文献   

11.
Arabis serrata (Brassicaceae), a perennial plant widely distributed along the Japanese Archipelago, occurs in various habitats: for example, limestone zones, serpentine barrens, volcanic soils, and roadsides. It likely survived by adapting to its surrounding environment, resulting in great morphological and ecological variation. In this study, we performed a phylogeographic analysis to examine past changes in the distribution of A. serrata following climate oscillations during the Pleistocene. To cover most of A. serrata's range, leaves were collected from eight to ten individuals randomly selected from each of 37 populations in the Japanese Archipelago. Two chloroplast noncoding regions of the samples were amplified and sequenced: trnT(GGU)‐psbD and trnH(GUG)‐psbA spacers. Twenty‐five haplotypes were detected and distinguished by 31 substitutions. Four main haplotypes were observed in many populations distributed throughout the Japanese Archipelago. According to the genetic boundaries detected using the Monmonier algorithm, A. serrata is clustered into four groups, each including several populations: Hokkaido Island, northern mainland Honshu, central Japan, and western Japan. The boundaries, however, were not robust because all genetic parameters did not support the differentiation among groups. These results indicate the absence of an obvious geographic structure in the distribution of A. serrata, suggesting that this species has experienced a rapid range expansion in postglacial times.  相似文献   

12.
Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette leaves at flowering varied among mutant lines. The relationship between these two traits depended strongly on nutrient supply. A lower nutrient supply first led to an extension of the vegetative phase, while the mean number of leaves at flowering was hardly affected. A further reduction resulted in no further extension of the vegetative phase and, on average, plants started flowering with a lower leaf number. At low nutrients, early flowering affected the timing of production of siliques rather than the total output, whereas late flowering was favorable at high nutrients. This may explain the fact that many plant species flower at a relatively small size under poor conditions. Flowering time genes had pleiotropic effects on the leaf length, number of rosette and cauline leaves, and number of axillary flowering shoots of the main inflorescence. Silique production was positively correlated with the number of axillary shoots of the main inflorescence; the number of axillary primordia appeared to have a large impact on reproductive yield.  相似文献   

13.
Idahoa scapigera produces solitary flowers in the axils of rosette leaves without elongation of the shoot axis, a rosette-flowering architecture. Previous work with one of the two I. scapigera LFY paralogs, IscLFY1, showed that this gene caused aerial flowering rosettes in Arabidopsis thaliana. In this paper, we report that after three generations IscLFY1 transgenic lines are phenotypically indistinguishable from wild-type Arabidopsis, indicating that IscLFY1 protein is able to replace normal LFY function. Additionally, we found that ectopic LFY expression late in development can phenocopy aspects of the aerial rosette phenotype, suggesting that shoot compression caused by IscLFY1 could be caused by localized overexpression of a functional IscLFY protein. We also characterized the expression and function of the second I. scapigera LFY paralog, IscLFY2, in A. thaliana. In contrast to IscLFY1, this paralog was expressed in floral meristems and the shoot apical meristem (SAM). In I. scapigera, LFY-specific antibodies detected high protein levels in developing flowers but not in the apex, suggesting trans-regulatory differences between I. scapigera and A. thaliana. Most IscLFY2 transgenic A. thaliana plants were indistinguishable from wild type, but in a minority of lines the SAM was converted to a terminal flower as would be expected from the reporter-expression pattern. Taken together these results show that both I. scapigera paralogs have conserved LFY function, both proteins can rescue lfy and both can modify inflorescence architecture in an A. thaliana background: either by affecting internode elongation (IscLFY1) or by causing homeotic conversion of shoots into flowers (IscLFY2).  相似文献   

14.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

15.
In response to our paper on the evolutionary history of the Chinese flora, Qian suggests that certain features of the divergence time estimation employed might have led to biased conclusions in Lu et al (2018). Here, we consider Qian's specific criticisms, explore the extent of uncertainty in the data and demonstrate that (i) no systematic bias toward dates that are too young or too old is detected in Lu et al.; (ii) constraint of the crown age of angiosperms does not bias the generic ages estimated by Lu et al.; and (iii) ages derived from the Chinese regional phylogeny do not bias the conclusions reported by Lu et al. All these analyses confirm that the conclusions reported previously are robust. We argue that, like many large-scale biodiversity analyses, sources of noise in divergence time estimation are to be expected, but these should not be confused with bias.  相似文献   

16.
The relationship between dispersal and differentiation of the European freshwater mussel Unio pictorum (Linnaeus, 1758) was studied with molecular genetic methods. Forty‐two populations from France, Italy and central Europe were analysed. Genetic relationships were assessed from the geographical distribution of allele frequencies at 17 enzyme loci. Neighbouring groups of populations show small to moderate mean genetic distances (0.020 < Dmean < 0.263). With a few exceptions the genetic affinities of the populations are the closest within the same drainage basin. In central Europe and Northern Italy genetic differences between drainage systems are relatively large. Populations from north‐eastern Italy are genetically similar to Danubian populations. Mussels from the islands of Corsica and Sardinia are more closely related to populations from the Italian peninsula than to French populations from the Rhône drainage system. Genetic relationships within U. pictorum from central Europe reflect palaeogeographical relationships between river systems during the Pliocene and Pleistocene. Literature data on two North American unionid species and one European fish species show the same relationship between genetic diversity and the history of drainage systems, although the correlations are less strong. In France and Italy this correspondence is much less evident. Population dynamic processes and human activities leading to populational bottlenecks might have obscured it.  相似文献   

17.
Historical information suggests the occurrence of an extensive human-caused contraction in the distribution range of wolves (Canis lupus) during the last few centuries in Europe. Wolves disappeared from the Alps in the 1920s, and thereafter continued to decline in peninsular Italy until the 1970s, when approximately 100 individuals survived, isolated in the central Apennines. In this study we performed a coalescent analysis of multilocus DNA markers to infer patterns and timing of historical population changes in wolves surviving in the Apennines. This population showed a unique mitochondrial DNA control-region haplotype, the absence of private alleles and lower heterozygosity at microsatellite loci, as compared to other wolf populations. Multivariate, clustering and Bayesian assignment procedures consistently assigned all the wolf genotypes sampled in Italy to a single group, supporting their genetic distinction. Bottleneck tests showed evidences of population decline in the Italian wolves, but not in other populations. Results of a Bayesian coalescent model indicate that wolves in Italy underwent a 100- to 1000-fold population contraction over the past 2000-10,000 years. The population decline was stronger and longer in peninsular Italy than elsewhere in Europe, suggesting that wolves have apparently been genetically isolated for thousands of generations south of the Alps. Ice caps covering the Alps at the Last Glacial Maximum (c. 18,000 years before present), and the wide expansion of the Po River, which cut the alluvial plains throughout the Holocene, might have provided effective geographical barriers to wolf dispersal. More recently, the admixture of Alpine and Apennine wolf populations could have been prevented by deforestation, which was already widespread in the fifteenth century in northern Italy. This study suggests that, despite the high potential rates of dispersal and gene flow, local wolf populations may not have mixed for long periods of time.  相似文献   

18.
Twelve primers to amplify microsatellite markers from the chloroplast genome of Lolium perenne were designed and optimized using de novo sequencing and in silico sequences. With one exception, each locus was polymorphic with a range from two to nine alleles in L. perenne. The newly developed primer pairs cross‐amplified in different species of Lolium and in 50 other grass species representing nine grass subfamilies.  相似文献   

19.
The aim of the present study was to examine the phylogeographic and evolutionary history of Picea likiangensis,a dominant species of the conifer forests in the eastern declivity of the Qinghai-Tibetan Plateau. We collected 422 individuals from 42 natural populations of three major varieties classified under this species.In conifers,mitochondrial(mt) DNA and chloroplast(cp) DNA dispersed by seeds or pollen experience very different levels of gene flow.To this end,we examined the sequence variation of two mtDNA fragments(nad5 intron 1 and nad1 intron b/c) and three cpDNA fragments(trnL-trnF,trnS-trnG and nadhK/C).We found that cpDNA probably introgressed from P.purpurea into remote populations of P.likiangensis through long-distance dispersal. Multiple refugia seem to have been maintained for P.likiangensis during the Last Glacial Maximum because the cpDNA and mtDNA haplotypes recovered were fixed in the different regions.Postglacial expansions were only detected at the distributional edges of this species where a single cpDNA or mtDNA haplotype was fixed in adjacent populations.However,genetic imprints of postglacial expansions from these two sets of markers were different in the western and southeastern regions,which may result from the long-distance dispersal of the cpDNA,as well as its fast lineage sorting during intraspecific divergences.Analysis of molecular variance further suggested that genetic differentiation between the three varieties is higher at cpDNA markers than at mtDNA markers,which supports the previous viewpoint that cpDNA markers with a high rate of gene flow may be more effective in delimitating closely related taxa.Together,the results of the present study highlight the evolutionary complexity of a widely distributed species owing to interactions among local and edge expansion,long-distance dispersal,and intraspecific divergences at two sets of DNA genomes with different rates of gene flow.  相似文献   

20.
Ten microsatellite primer pairs, developed from Caulanthus amplexicaulis var. barbarae (J. Howell) Munz, specifically amplified target loci across a diverse range of taxa from the Streptanthoid Complex, Brassicaceae. All primer pairs produced amplification products from at least 22 of the 23 accessions tested. Product size variation and observable heterozygosity were consistent with what would be expected from the amplification of polymorphic microsatellites across the complex. Our findings demonstrate that microsatellites developed for C. amplexicaulis var. barbarae will be useful for population‐genetic studies in taxa throughout the Streptanthoid Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号