首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

2.
A comparative pharmacological analysis of relative contributions of different signal transduction pathways in the activation of contraction (excitation-contraction coupling, ECC) in intact fast striated muscles of frog and lamprey was performed. It was found that the major mechanism responsible for the ECC in muscles of both animals is Ca2+ release from the sarcoplasmic reticulum through the ryanodine-sensitive channels. However, the ECC in lamprey muscle displays some important differences in the units of electromechanical coupling, which precede the calcium release from sarcoplasmic reticulum. The maximum contraction force in frog muscle develops during caffeine-induced contracture, which indicates that all Ca2+ stored in sarcoplasmic reticulum is released through ryanodine-sensitive channels. In contrast, in lamprey muscle, the maximum force develops not in response to high caffeine concentration, but in response to repetitive electrical stimulation. Hence, in addition to stores liberated by ryanodine-sensitive channels, some other sources of calcium ions should exist, which contribute to the contraction activation. A source of this additional Ca2+ ions can be external medium, because acetylcholine contracture is abolished in a calcium-free medium. In frog muscle, the acetylcholine contracture was abolished in a Na(+)-free solution. It was concluded that in frog muscle ECC can be triggered by changes in the transmembrane potential (depolarization-induced calcium release), while in lamprey muscle the entry of calcium ions into myoplasm as the trigger in ECC (calcium-induced calcium release). The lamprey muscle was found to be more resistant to tetrodotoxin and tetracaine, which is indicative of a role in the activation of contraction of tetrodotoxin-resistant Na+ and/or Ca2+ channels. It was concluded, that ECC mechanism in striated muscles of low vertebrates is not limited by the generally accepted scheme of depolarization-induced calcium release but can include some other schemes, which require the Ca2+ influx into the cell.  相似文献   

3.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange.  相似文献   

4.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

5.
The distribution of lipophilic anion of phenyldicarbaundecarborane (PCB-) between water phase and fragments of sarcoplasmic reticulum (SR) from skeletal muscle was studied, using a bilayer lipid membrane (BLM) as a selective electrode. Addition of ATP leads to an increase in PCB- binding to SR vesicles. The ATP effect is totally reversible only in the presence of both EGTA and A23187. Chlorides, in contrast with oxalate and phosphate, do not reduce the ATP-dependent PCB- binding. Oxalate decreases also the energy-dependent extrusion of protons from SR into the medium. Preliminary incubation of SR fragments with calcium gluconate leads to a decrease in PCB- binding. Addition of ATP to purified Ca2+-ATPase is coupled with a release of PCB- and calcium from the enzyme. It is suggested that ATP-dependent binding of PCB- to SR membranes reflects calcium incorporation into the hydrophobic region of Ca2+-ATPase molecules.  相似文献   

6.
Mechanisms of stimulated 45Ca efflux in skinned skeletal muscle fibers   总被引:2,自引:0,他引:2  
Excitation-contraction (E-C) coupling in skeletal muscle can be studied in skinned fibers by direct assay of 45Ca efflux and simultaneous isometric force, under controlled conditions. Recent work provides evidence that such studies can address major current questions about the mechanisms of signal transmission between transverse tubules and sarcoplasmic reticulum and sarcoplasmic reticulum calcium release, as well as operation of the sarcoplasmic reticulum active Ca transport system in situ. Stimulation by imposed ion gradients at constant [K+][Cl-] product results in 45Ca release with two components: a large Ca2+-dependent efflux, responsible for contractile activation, and a small Ca2+-insensitive efflux. The Ca2+-insensitive stimulation is sustained, consistent with sustained depolarization, and appears to gradate the Ca2+-dependent stimulation; this component is likely to reflect intermediate steps in E-C coupling. Several lines of evidence suggest that the depolarizing stimulus acts on the transverse tubules. It is inhibited by the impermeant glycoside ouabain applied before skinning, which should specifically inhibit polarization of subsequently sealed transverse tubules. Sealed polarized transverse tubules also are the only plausible target for stimulation of 45Ca release by monensin and gramicidin D, which can rapidly dissipate Na+ and K+ gradients; a protonophore and the K+-specific ionophore valinomycin are ineffective. Ionophore stimulation is prevented by the permeant glycoside digitoxin; it is also highly Ca2+ dependent. Stimulation of 45Ca release by imposed ion gradients is potentiated by perchlorate, which potentiates charge movements and activation in intact fibers, and is inhibited selectively in highly stretched fibers, presumably by transverse tubule-sarcoplasmic reticulum uncoupling. These results relate the Ca2+-dependent sarcoplasmic reticulum efflux channel to the physiological transverse tubule-sarcoplasmic reticulum coupling pathway, which also could involve Ca2+.  相似文献   

7.
An investigation of isolated and purified heart sarcoplasmic reticulum performed in the current study indicates the presence of significant creatine phosphokinase (CPK) activity in this preparation. The localization of CPK on the membrane of sarcoplasmic reticulum has been revealed also by an electron microscopic histochemical method. Under the conditions of the Ca(2+)-ATPase reaction in the presence of creatine phosphate, the release of creatine into the reaction medium is observed, the rate of the latter process being dependent on the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the reticular membrane is able to maintain the high rate of calcium consumption by the sarcoplasmic reticulum vesicles. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of sarcoplasmic reticulum and indicate the important functional role of CPK in supplying energy for the Ca(2+)-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum.  相似文献   

8.
We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red) of this release were investigated. In a medium composed of 100 mM KCl buffered at pH 6.8 with 20 mM K/3-(N-morpholino)propanesulfonic acid the Ca2+ release rate was maximal (500 nmol of Ca2+ released.(mg of protein)-1.s-1) at 1 micron external Ca2+ and 5 mM ATP. We also observed a rapid Ca2+ release induced by micromolar Ag+ in the presence of ATP (at 1 nM Ca2+). The Ag+-induced Ca2+ release was totally inhibited by 5 micron ruthenium red. We have also investigated the effect of monovalent ions on the Ca2+ release elicited by Ca2+ or Ag+. We show that the Ca2+ release rate: 1) was dependent upon the presence of K+ or Na+ in the release medium and 2) was influenced by a K+ gradient created across the sarcoplasmic reticulum membrane. These results directly support the idea of the involvement of an influx of K+ (through K+ channels) during the Ca2+ release and allow to reconsider a possible influence of the membrane potential of the sarcoplasmic reticulum on the Ca2+ release.  相似文献   

9.
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent.  相似文献   

10.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

11.
A microsomal fraction resembling striated muscle sarcoplasmic reticulum was isolated from uterine smooth muscle. ATP induces calcium accumulation in this fraction. Increased temperature enhances calcium accumulation and calcium-activated ATPase. In the absence of ATP, approximately 35% of the intrinsic calcium exchanges with the 45Ca in the incubation medium. In the presence of ATP, exchange of intrinsic calcium with 45Ca increases by an amount which equals the ATP-dependent calcium binding. In preparations partially preloaded with calcium, a steady state of bound calcium is reached when the ATP is exhausted. Calcium is released under these conditions by prostaglandins E2 and F2alpha, but not by PGF1beta. The antibiotic ionophores X537A and A23187, as well as oxytocin, also release calcium previously accumulated under ATP stimulation. None of these agents, with the exception of oxytocin, release intrinsic calcium. Thus, the effect of prostaglandins resembles that of the ionophores, suggesting an ionophoretic action of these prostaglandins. The release of calcium conforms with the in vivo smooth muscle contracting action of these agents.  相似文献   

12.
A microsomal preparation with a high ability for Ca2+ uptake has been isolated from pigeon heart. A method of further purification of Ca2+-accumulating system of heart, based on the ability of sarcoplasmic reticulum for the energy-dependent Ca2+ accumulation in the presence of oxalate, has been developed. Upon centrifugation in the gradient of sucrose and KCl concentration the fragments of sarcoplasmic reticulum, rendered "heavy" by calcium oxalate, can be separated from foreign cell membranes. The main component of heart "calcium pump" is Ca2+-dependent ATPase (making up to about 50% of all proteins of the purified reticulum), having a molecular weight of 100.000--105.000. Specific activity of heart Ca2+-ATPase as well as the ability of purified heart sarcoplasmic reticulum for Ca2+ uptake are only slightly less than those of the skeletal muscle reticulum. The data obtained suggest that heart sarcoplasmic reticulum may be efficient for providing heart muscle relaxation.  相似文献   

13.
The effects of tricyclohexyltin hydroxide (Plictran), an organotin acaricide, on 45Ca2+ uptake and Ca2+ ATPase were studied in vitro and in vivo in rat heart ventricular membrane vesicles, primarily sarcoplasmic reticulum. There was a concentration dependent inhibition of both 45Ca2+ uptake and Ca2+ ATPase in vivo as well as in vitro. Isoproterenol, a beta-adrenergic agonist, stimulated 45Ca2+ uptake and Ca2+ ATPase of sarcoplasmic reticulum and this was also inhibited by Plictran. Since cardiac relaxation is mediated by beta-adrenergic stimulation via Ca+ uptake by sarcoplasmic reticulum, the inhibition of calcium pump activity by Plictran may result in alterations in cardiac Ca2+ fluxes leading to cardiac dysfunction.  相似文献   

14.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

15.
Following a reduced pressure in the left ventricle, elevated concentrations of sodium ions enhanced by half the contraction force of the rat isolated heart. This effect was shown to be independent of the Na-channels blockers or Na/H exchange of caffeine but quite susceptible to sodium channel blockers, caffeine, and the blocking agent for Na-Ca exchange Ni2+. A decrease in potassium concentration amplified, and elevation of K+ level attenuated the positive inotropic effect of the elevated concentration of sodium ions. The effect was preserved even after heart arrest induced by verapamil. The findings suggest that elevated concentration of sodium ions may affect the Na+/Ca2+ exchange and provoke Ca2+ release from sarcoplasmic reticulum by means of changing the sodium gradient. These data corroborate the Leblanc and Hume hypothesis of the sodium-induced calcium ions release from sarcoplasmic reticulum.  相似文献   

16.
Pretreatment of sarcoplasmic membranes with acetic or maleic anhydrides, which interact principally with amino groups, resulted in an inhibition of Ca2+ accumulation and ATPase activity. The presence of ATP, ADP or adenosine 5'-[beta, gamma-imido]triphosphate in the modification medium selectively protected against the inactivation of ATPase activity by the anhydride but did not protect against the inhibition of Ca2+ accumulation. Acetic anhydride modification in the presence of ATP appeared to increase specifically the permeability of the sarcoplasmic reticulum membrane to Ca2+ but not to sucrose, Tris, Na+ or Pi. The chemical modification stimulated a rapid release of Ca2+ from sarcoplasmic reticulum vesicles passively or actively loaded with calcium, from liposomes reconstituted with the partially purified ATPase fraction but not from those reconstituted with the purified ATPase. The inactivation of Ca2+ accumulation by acetic anhydride (in the presence of ATP) was rapid and strongly pH-dependent with an estimated pK value above 8.3 for the reactive group(s). The negatively charged reagents pyridoxal 5-phosphate and trinitrobenzene-sulphonate, which also interact with amino groups, did not stimulate Ca2+ release. Since these reagents do not penetrate the sarcoplasmic reticulum membranes, it is proposed that Ca2+ release is promoted by modification of internally located, positively charged amino group(s).  相似文献   

17.
Calixarenes, owing to the ability to form supramolecular complexes with biologically important molecules and ions, can influence a course of biochemical processes and, accordingly, be considered as perspective molecular platforms for creation of physiologically active compounds. The work purpose is to study calixarene C-91 influence on systems of active Ca ions transport which are localized in subcellular membrane structures (mitochondria, sarcoplasmic reticulum, plasma membrane) of myometrial cells. It has been shown, that calixarene C-91 addition to incubation medium led to an increase in Ca2+ accumulation level in mitochondria. The maximal stimulating effect was 173% and it was observed at 100 microM concentration. It is suggested, that calixarene C-91 can enter mitochondria with the subsequent precipitation of Ca ions in a matrix therefore calcium capacity increases, and as a consequence, higher Ca2+ accumulation in these structures is observed. In a wide range of concentration (1-100 microM) calixarene C-91 did not influence a level of Ca2+ accumulation in sarcoplasmic reticulum of myometrial cells. Titration of solubilized Ca2+, Mg2+-ATPase by calixarene C-91 (0,1-100 microM) did not cause changes in its activity. Thus, calixarene C-91 increases Ca2+ accumulation level in mitochondria, but practically does not influence calcium pumps activity of a plasma membrane and sarcoplasmic reticulum of myometrial cells.  相似文献   

18.
The relationship between Ca2+ fluxes and the ion diffusion potential was analyzed on sarcoplasmic reticulum membranes using oxacarbocyanine dyes as optical probes for membrane potential. 3.3'-Diethyloxodicarbocyanine responds to ATP-induced Ca2+ uptake by isolated sarcoplasmic reticulum vesicles with a decrease in absorbance at 600 nm. The optical change is reversed during Ca2+ release from sarcoplasmic reticulum induced by KCl or by ADP and inorganic phosphate. The absorbance changes are largely attributable to the binding of accumulated Ca2+ to the membrane. There is no indication that sustained changes in membrane diffusion potential would accompany pump-mediated Ca2+ fluxes. A large change in the absorbance of 3,3'-diethyloxodicarbocyanine was observed on sarcoplasmic reticulum vesicles under the influence of membrane potential generated by valinomycin in the presence of a K+ gradient or by ionophore A23187 in the presence of a Ca2+ gradient. The maximum of the potential-dependent absorbance change is at 575--580 nm. The potentials generated by valinomycin or ionophore A23187 are short-lived due to the high permeability of sarcoplasmic reticulum membranes for cations and anions. There is no correlation between the direction and magnitude of the artifically imposed membrane potential and the rate of Ca2+ uptake or release by isolated sarcoplasmic reticulum vesicles.  相似文献   

19.
S Orlowski  P Champeil 《Biochemistry》1991,30(47):11331-11342
Using rapid filtration, we investigated the kinetics of release toward the lumen of sarcoplasmic reticulum vesicles of the two Ca2+ ions transported by the Ca(2+)-dependent ATPase of these vesicles. Release rates at 20 degrees C were measured by three methods, with vesicles previously made leaky with an ionophore. First, we measured the rate at which 45Ca2+ bound to ATPase approached its steady-state level after addition of ATP to the 45Ca(2+)-equilibrated ATPase. At pH 6 in the absence of potassium, the observed kinetics did not reveal any very fast phase of 45Ca2+ dissociation from phosphorylated ATPase. Second, we measured the kinetics of 45Ca2+ dissociation from phosphorylated ATPase in a "chase" experiment, by isotopic dilution of calcium under turnover conditions in the presence of potassium. We found that these kinetics were essentially monophasic. Moreover, when they were measured in the presence of a high concentration of calcium, designed to saturate the low-affinity calcium transport sites on the lumenal side of the ATPase, they only departed slightly from monophasic behavior, irrespective of the experimental pH (pH 6, 7, or 9). This small perturbation by high calcium concentrations of the observed dissociation kinetics was attributed to ADP-facilitated rapid exchange of 40Ca2+ for Mg2+ at the catalytic site of phosphorylated ATPase. The third method was based on the fact that phosphorylation-induced 45Ca2+ occlusion occurred faster than 45Ca2+ dissociation from nonphosphorylated ATPase: here, we measured the rate of 45Ca2+ internalization on addition to 45Ca(2+)-saturated ATPase of an unlabeled ATP-containing medium. This method allowed separate observation of the dissociation kinetics of each of the two 45Ca2+ ions bound to phosphorylated ATPase, after either one or the other had been labeled by a preliminary partial isotopic exchange in the non-phosphorylated state of the ATPase. We found that after ATP-induced phosphorylation, the two 45Ca2+ ions dissociated toward the lumenal medium with virtually identical rate constants; this was observed under different ionic and pH conditions and also in the presence of a high Ca2+ concentration. As a control, the same partial isotopic exchange procedure allowed us to confirm that, in contrast, when ATP was absent from the final dissociation medium, the two 45Ca2+ ions dissociated from nonphosphorylated ATPase toward the cytoplasmic medium at different rates, the one bound more deeply only dissociating after a lag period corresponding to dissociation of the superficial one.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The review systematizes and analyzes recent data about the role of different Ca(2+)-transport mechanisms in the regulation of Ca2+ metabolism and functional activity of the cardiomyocytes. During the cardiac action potential, Ca2+ enters the cardiomyocytes through sarcolemmal L-type calcium channels and via the Na+/Ca2+ exchange. This Ca2+ activates the release of additional Ca2+ from the sarcoplasmic reticulum. The sum of calcium from sarcolemmal influxes and sarcoplasmic release produces contractile effect. For the occurrence of relaxation, Ca2+ remove from the cytoplasm by three mechanisms, namely, sarcoplasmic Ca2+ pump, Na+/Ca2+ exchange and sarcolemmal Ca2+ pump. In this review, the structural and functional properties of the Ca2+ transport systems in the sarcolemmal membranes, sarcoplasmic reticulum and mitochondria are discussed. In addition alterations in regulation of intracellular calcium by activation of beta- and alpha-adrenergic receptors are consider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号