共查询到20条相似文献,搜索用时 15 毫秒
1.
E Leo K Welsh S Matsuzawa J M Zapata S Kitada R S Mitchell K R Ely J C Reed 《The Journal of biological chemistry》1999,274(32):22414-22422
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism. 相似文献
2.
3.
4.
BCR signaling is propagated by a series of intermediaries and eventuates in NF-kappaB activation, among other outcomes. Interruption of several mediators that constitute the signalosome, such as PI3K and phospholipase Cgamma2, completely blocks BCR signaling for NF-kappaB. We show here that this accepted, conventional paradigm is, in fact, limited to naive B cells. CD40L treatment reprograms normal B cells such that a novel, alternate pathway for BCR signaling is created. Through this alternate pathway BCR triggering induces nuclear NF-kappaB without the need for PI3K or for phospholipase Cgamma2. Induction of NF-kappaB via the alternate pathway is accompanied by IkappaB kinase beta (IKKbeta) phosphorylation, IkappaBalpha phosphorylation, and IkappaBalpha degradation, and inhibition of IKKbeta blocked IkappaBalpha degradation. Several key events in the conventional pathway, including early protein tyrosine phosphorylation, were unimpeded by generation of the alternate pathway which appears to operate in parallel, rather than in competition, with classical BCR signaling. These results demonstrate cross-talk between CD40 and BCR, such that the requirements for BCR signaling are altered by prior B cell exposure to CD40L. The alternate BCR signaling pathway bypasses multiple signalosome elements and terminates in IKKbeta activation. 相似文献
5.
Cyclic AMP-independent activation of transcription factor NF-kappa B in HL60 cells by tumor necrosis factors alpha and beta. 总被引:5,自引:2,他引:5
下载免费PDF全文

No correlation exists in HL60 cells between NF-kappa B activation by tumor necrosis factor (TNF alpha) and TNF beta and intracellular levels of cyclic AMP. Cyclic AMP levels did not increase upon treatment of cells with each of these cytokines, although NF-kappa B was activated. Forskolin or 1-isobutyl-3-methylxanthine drastically increased intracellular levels of cyclic AMP, but neither activated NF-kappa B nor influenced TNF-induced NF-kappa B activation. 相似文献
6.
7.
Piccolella E Spadaro F Ramoni C Marinari B Costanzo A Levrero M Thomson L Abraham RT Tuosto L 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):2895-2903
We have recently observed that CD28 engagement initiates a signaling pathway leading to the activation of I kappa B kinase (IKK) complex and, consequently, to NF-kappa B activation, and we identified Vav-1 as an important mediator of this function. Here we report for the first time that Vav-1 constitutively associates with IKK alpha in both Jurkat and primary CD4(+) T cells. Vav-1/IKK alpha association is mediated by their helix-loop-helix domains, does not involve IKK beta, and is functionally relevant in that Vav-1-associated IKK alpha kinase activity is increased following CD28 engagement by B7. Moreover, we demonstrate that CD28-induced NF-kappa B activation is augmented by both IKK alpha and Vav-1, but not IKK beta. Confocal microscopy showed that endogenous Vav-1 and IKK alpha, but not IKK beta, were recruited to the membrane and colocalized in response to CD28 stimulation. Taken together, these data evidence that Vav-1 plays a key role in the control of NF-kappa B pathway by targeting IKK alpha in the T cell membrane and favoring its activation in response to CD28 stimulation. 相似文献
8.
Yoon SW Goh SH Chun JS Cho EW Lee MK Kim KL Kim JJ Kim CJ Poo H 《The Journal of biological chemistry》2003,278(35):32914-32920
The neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) inhibits inflammation by down-regulating the expression of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in leukocytes via stimulation of alpha-MSH cell surface receptors. However, the signaling mechanism of alpha-MSH action has not yet been clearly elucidated. Here, we have investigated signaling pathways by which alpha-MSH inhibits lipopolysaccharide (LPS)-induced TNF-alpha production in leukocytes such as THP-1 cells. We focused on the possible roles of protein kinase A (PKA), p38 kinase, and nuclear factor kappa B (NF kappa B) signaling. In THP-1 cells, LPS is known to activate p38 kinase, which in turn activates NF kappa B to induce TNF-alpha production. We found that pretreatment of cells with alpha-MSH blocked LPS-induced p38 kinase and NF kappa B activation as well as TNF-alpha production. This response was proportional to alpha-MSH receptor expression levels, and addition of an alpha-MSH receptor antagonist abolished the inhibitory effects. In addition, alpha-MSH treatment activated PKA, and PKA inhibition abrogated the inhibitory effects of alpha-MSH on p38 kinase activation, NF kappa B activation, and TNF-alpha production. Taken together, our results indicate that stimulation of PKA by alpha-MSH causes inhibition of LPS-induced activation of p38 kinase and NF kappa B to block TNF-alpha production. 相似文献
9.
10.
Acute myeloid leukemia (AML) cell lines treated by genotoxic agents or by Tumor Necrosis Factor alpha (TNFalpha) acquire potent cytotoxicity towards myeloid cells through activation of granzyme B (GrB)/perforin (PFN) system. Here we first extend this observation to another death receptor activator, Fas Ligand (FasL). Moreover, we analyzed GrB induction signalling pathway in TNFalpha- and FasL-stimulated AML cells. The effects of TNFalpha and FasL on GrB expression were specifically mediated by p38MAPK (Mitogen-activated-protein-kinase) activation. Otherwise, TNFalpha and FasL stimulation led to radical oxygen species (ROS) generation and ASK1 (Apoptosis-signal-regulating-kinase-1) activation. Endogenous activation of ASK1 by either H2O2 or thioredoxin (Trx) reductase inhibition had the same effects as TNFalpha and FasL on GrB up regulation. Altogether, our results suggest that TNFalpha- and FasL-stimulated AML cell lytic induction is regulated by a signalling pathway involving sequentially, ROS generation, Trx oxidation, ASK1 activation, p38MAPK stimulation and GrB induction at mRNA and protein levels. 相似文献
11.
CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells 总被引:20,自引:0,他引:20
Schwabe RF Schnabl B Kweon YO Brenner DA 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(11):6812-6819
Activated hepatic stellate cells (HSCs) are the main producers of extracellular matrix in the fibrotic liver and contribute to hepatic inflammation through the secretion of chemokines and the recruitment of leukocytes. This study assesses the function of CD40 on human HSCS: Activated human HSCs express CD40 in culture and in fibrotic liver, as determined by flow cytometry, RT-PCR, and immunohistochemistry. CD40 expression is strongly enhanced by IFN-gamma. Stimulation of CD40 with CD40 ligand (CD40L)-transfected baby hamster kidney cells induces NF-kappaB, as demonstrated by the activation of I-kappaB kinase (IKK), increased NF-kappaB DNA binding, and p65 nuclear translocation. CD40-activated IKK also phosphorylates a GST-p65 substrate at serine 536 in the transactivation domain 1. Concomitant with the activation of IKK, CD40L-transfected baby hamster kidney cell treatment strongly activates c-Jun N-terminal kinase. CD40 activation increases the secretion of IL-8 and monocyte chemoattractant protein-1 by HSCs 10- and 2-fold, respectively. Adenovirally delivered dominant negative (dn) IKK2 and TNFR-associated factor 2dn inhibit IKK-mediated GST-I-kappaB and GST-p65 phosphorylation, NF-kappaB binding, and IL-8 secretion, whereas IKK1dn and NF-kappaB-inducing kinase dominant negative do not have inhibitory effects. We conclude that the CD40-CD40L receptor-ligand pair is involved in a cross-talk between HSCs and immune effector cells that contributes to the perpetuation of HSC activation in liver fibrosis through TNFR-associated factor 2- and IKK2-dependent pathways. 相似文献
12.
13.
Transactivation by c-Rel (nuclear factor kappaB) was dependent on phosphorylation of several serines in the transactivation domain, indicating that it is a phosphorylation-dependent Ser-rich domain. By Ser --> Ala mutational and deletion analysis, we have identified two regions in this domain: 1) a C-terminal region (amino acids 540-588), which is required for basal activity; and 2) the 422-540 region, which responds to external stimuli as tumor necrosis factor (TNF) alpha or phorbol myristate acetate plus ionomycin. Ser from 454 to 473 were shown to be required for TNFalpha-induced activation, whereas Ser between 492 and 519 were required for phorbol myristate acetate plus ionomycin activation. Phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) zeta were identified as downstream signaling molecules of TNFalpha-activation of c-Rel transactivating activity. Interestingly, dominant negative forms of PI3K inhibited PKCzeta activation and dominant negative PKCzeta inhibited PI3K-mediated activation of c-Rel transactivating activity, indicating a cross-talk between both enzymes. We have identified the critical role of different Ser for PKCzeta- and PI3K-mediated responses. Interestingly, those c-Rel mutants not only did not respond to TNFalpha but also acted as dominant negative forms of nuclear factor kappaB activation. 相似文献
14.
Optimal activation of B-lymphocytes depends both upon expression of various cell surface receptors and adequate integration of signaling pathways. This requires signals generated upon recognition of antigen by the B lymphocyte antigen receptor (BCR) as well as additional signals provided by cognate interaction with T helper cells, including the CD40-CD154 interaction. Engagement of both the BCR and CD40 results in synergistic activation of B cells. Previous studies identified tumor necrosis factor receptor-associated factor (TRAF)-2 and TRAF3 in the CD40-signaling pathway together with BCR-activated protein kinase D (PKD) as important cooperative factors in this synergy. To better understand the role of these factors in bridging the BCR and CD40 signaling pathways, BCR signal regulation of TRAF function was examined. Results show that phosphorylation of TRAF2 is increased upon BCR but not CD40 engagement and that of the potentially phosphorylated residues of TRAF2, tyrosine 484 is crucial for BCR-CD40 synergy. Additionally, wild type or constitutively active Bruton's tyrosine kinase (Btk) enhanced, whereas the xid mutant form of Btk prevented, BCR-CD40 synergy. These effects were dependent upon TRAF2 and PKD activity. These findings suggest a model in which Btk contributes to the enhancement of the CD40 response by TRAF2 in a PKD-dependent manner. 相似文献
15.
M W Anthonsen S Andersen A Solhaug B Johansen 《The Journal of biological chemistry》2001,276(38):35344-35351
16.
Castrillo A de Las Heras B Hortelano S Rodriguez B Villar A Bosca L 《The Journal of biological chemistry》2001,276(19):15854-15860
The anti-inflammatory action of most terpenes has been explained in terms of the inhibition of nuclear factor kappaB (NF-kappaB) activity. Ent-kaurene diterpenes are intermediates of the synthesis of gibberellins and inhibit the expression of NO synthase-2 and the release of tumor necrosis factor-alpha in J774 macrophages challenged with lipopolysaccharide. These diterpenes inhibit NF-kappaB and IkappaB kinase (IKK) activation in vivo but failed to affect in vitro the function of NF-kappaB, the phosphorylation and targeting of IkappaBalpha, and the activity of IKK-2. Transient expression of NF-kappaB-inducing kinase (NIK) activated the IKK complex and NF-kappaB, a process that was inhibited by kaurenes, indicating that the inhibition of NIK was one of the targets of these diterpenes. These results show that kaurenes impair the inflammatory signaling by inhibiting NIK, a member of the MAPK kinase superfamily that interacts with tumor necrosis factor receptor-associated factors, and mediate the activation of NF-kappaB by these receptors. Moreover, kaurenes delayed the phosphorylation of p38, ERK1, and ERK2 MAPKs, but not that of JNK, in response to lipopolysaccharide treatment of J774 cells. The absence of a coordinate activation of MAPK and IKK might contribute to a deficient activation of NF-kappaB that is involved in the anti-inflammatory activity of these molecules. 相似文献
17.
18.
A mutant Escherichia coli lipopolysaccharide (LPS) lacking myristoyl fatty acid markedly stimulates the activity of manganese superoxide dismutase (MnSOD) without inducing tumor necrosis factor alpha (TNFalpha) production by human monocytes (Tian et al., 1998, Am J Physiol 275:C740.), suggesting that induction of MnSOD and TNFalpha by LPS are regulated through different signal transduction pathways. The protein tyrosine kinase (PTK)/mitogen-activated protein kinase (MAPK) pathway plays an important role in the LPS-induced TNFalpha production. In the current study, we determined the effects of PTK inhibitors, genistein and herbimycin A, on the induction of MnSOD and TNFalpha in human monocytes. Genistein (10 microg/ml) and herbimycin A (1 microg/ml) markedly inhibited LPS-induced protein tyrosine phosphorylation, phosphorylation and nuclear translocation of MAPK (p42 ERK, extracellular signal-regulated kinase), and increases in the steady state level of TNFalpha mRNA as well as TNFalpha production. In contrast, at similar concentrations, genistein and herbimycin A had no effect on the LPS-induced activation of nuclear factor kappaB (NFkappaB) and induction of MnSOD (mRNA and enzyme activity) in human monocytes. In addition, inhibition of NFkappaB activation by gliotoxin and pyrrodiline dithiocarbamate, inhibited LPS induction of TNFalpha and MnSOD mRNAs. These results suggest that (1) while PTK and MAPK are essential for the production of TNFalpha, they are not necessary for the induction of MnSOD by LPS, and (2) while activation of NFkappaB alone is insufficient for the induction of TNFalpha mRNA by LPS, it is necessary for the induction of TNFalpha as well as MnSOD mRNAs. 相似文献
19.
Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis
下载免费PDF全文

Giving C57BL/6 mice 10(4) PFU of coxsackievirus B3 (H3 variant) fails to induce myocarditis, but increasing the initial virus inoculum to 10(5) or 10(6) PFU causes significant cardiac disease. Virus titers in the heart were equivalent at days 3 and 7 in mice given all three virus doses, but day 3 titers in the pancreases of mice inoculated with 10(4) PFU were reduced. Tumor necrosis factor alpha (TNF-alpha) concentrations in the heart were increased in all infected mice, but cytokine levels were highest in mice given the larger virus inocula. TNF-alpha(-/-) and p55 TNF receptor-negative (TNFR(-/-)) mice developed minimal myocarditis compared to B6;129 or C57BL/6 control mice. p75 TNFR(-/-) mice were as disease susceptible as C57BL/6 animals. No significant differences in virus titers in heart or pancreas were observed between the groups, but C57BL/6 and p75 TNFR(-/-) animals showed 10-fold more inflammatory cells in the heart than p55 TNFR(-/-) mice, and the cell population was comprised of high concentrations of CD4(+) gamma interferon-positive and Vgamma4(+) cells. Cardiac endothelial cells isolated from C57BL/6 and p75 TNFR(-/-) mice upregulate CD1d, the molecule recognized by Vgamma4(+) cells, but infection of TNF(-/-) or p55 TNFR(-/-) endothelial cells failed to upregulate CD1d. Infection of C57BL/6 endothelial cells with a nonmyocarditic coxsackievirus B3 variant, H310A1, which is a poor inducer of TNF-alpha, failed to elicit CD1d expression, but TNF-alpha treatment of H310A1-infected endothelial cells increased CD1d levels to those seen in H3-infected cells. TNF-alpha treatment of uninfected endothelial cells had only a modest effect on CD1d expression, suggesting that optimal CD1d upregulation requires both infection and TNF-alpha signaling. 相似文献
20.