共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack. 相似文献
2.
Summary We have followed the action of brefeldin A (BFA) on the Golgi apparatus of developing pea cotyledons, the cells of which are actively engaged in the synthesis and deposition of storage proteins. The Golgi apparatus of normal cells is characterized by the presence of three different types of vesicle: smooth-surfaced secretory vesicles, dense vesicles which carry the storage proteins, and clathrin-coated vesicles (CCV). The dense vesicles originate at the cis cisternae and undergo a maturation as they pass through the Golgi stack, presumably as a result of cisternal progression. CCV bud off from dense and smooth vesicles, which may be attached to one another, at the trans pole of the Golgi apparatus. BFA eliminates the CCV and leads, initially, to an increase in the number and length of the cisternae. Dense vesicles are still to be seen, and many show an increase in diameter. Longer BFA treatments result in a trans-driven vesiculation and an accumulation of vesicles within the vicinity of single cisternae. The vesicles were sometimes seen to be connected to one another via a network of tubules. As judged by immunocytochemistry with gold-coupled legumin and vicilin antisera, some of the dilated vesicles originate directly from dense vesicles by swelling whereas others probably arise by dilation of Golgi cisternae since they possess a layer of flocculent storage proteins at their periphery. By contrast the centre of the dilated vesicles labels positively with antibodies against complex glycans, indicating that the ability to segregate storage proteins from cell wall or lytic vacuole glycoproteins is lost during extended BFA treatment. The effects of BFA are reversible when cotyledons are further incubated on Gamborg's medium for 5 h without the inhibitor.Dedicated to Professor R. Kollmann on the occasion of his 65th birthday. 相似文献
3.
Gabrielle R Neises Philip G Woodman Terry D Butters Richard L Ornberg Frances M Platt 《Biology of the cell / under the auspices of the European Cell Biology Organization》1997,89(2):123-131
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound. 相似文献
4.
A golgi-enriched subfraction was obtained from porcine thyroid glands by differential centrifugation. When incubated in a suitable medium, these vesicles were able to concentrate iodide from the medium and bind it to protein. The iodination process was inhibited by methylmercapto-imidazole and was increased by the addition of an H2O2 generating system to the medium. Analysis of the protein content of the vesicles revealed the presence of 18 and 12-13 S thyroglobulin molecules, lacking mannose residues, and containing only monoiodotyrosine. It is concluded that in vitro, iodination can begin before exocytosis, in the smooth-surfaced vesicles derived from the golgi apparatus, as soon as N-acetylglucosamine is incorporated onto the pre-thyroglobulin molecule. 相似文献
5.
Summary The effect of short-time treatment with the ionophore monensin, administered intraluminally at concentrations of 5 and 10 M, was studied on the Golgi apparatus of absorptive cells in the small intestine of the rat. At 2–3 min after treatment most of the Golgi stacks exhibited dilated cisternae. At 4–5 min stacked cisternae were absent; they were replaced by groups of smooth-surfaced vacuoles. Dilatation and vacuolization occurred in the entire stacks without preferential effect on any particular Golgi subcompartment.Monensin did not influence the cytochemical Golgi reaction of thiamine pyrophosphatase and acid phosphatase. The characteristic staining pattern of these two enzymes in all Golgi cisternae of absorptive cells in the proximal small intestine, and the reactivity restricted to trans cisternae in distal segments of the small intestine, were unchanged after treatment with monensin. In the distal small intestine, the cytochemical pattern allowed the monensin-induced vacuoles to be attributed to the former cisor trans-Golgi face. Further, the cytochemical results demonstrate that vacuolization is not restricted to the stacked cisternae, but includes the trans-most cisterna. The latter, usually located at some distance from the Golgi stacks, has been defined as belonging to the GERL system in several types of cells. The clear response to monensin, an agent that selectively affects the Golgi apparatus, indicates common properties between trans-most and stacked Golgi cisternae. 相似文献
6.
Richard H. Racusen 《Physiologia plantarum》1988,74(4):752-762
Suspension cultured oat (Avena sativa L. cv. Garry) cells, which secrete polysaccharides into the medium, were used as starting material for analyses of Golgi-derived vesicle membranes and plasma membranes isolated during cell fractionation. Vesicles collected by a procedure employing ultrafiltration followed by ultracentrifugation into a sucrose step gradient exhibited an equilibrium density of 1.27 g cm?3 when run on continuous sucrose gradients, a feature which is most likely attributable to the high concentration of enclosed polysaccharides. Brief sonication lowered the density of these vesicles to about 1.15 g cm?3, as judged from the coincidence of the protein peak and the marker enzymes for Golgi [Triton-stimulated UDPase, cold-storage IDPase (EC 3.6.1.6)] and plasma membrane [vanadate-inhibited K+, Mg2+-ATPase (EC 3.6.1.3)]. Sonication of these vesicles also greatly diminished the amount of detectable polysaccharide observed in a colorimetric assay for sugars. Fractionation of a plasma membrane-enriched preparation from these cells on continuous sucrose gradients showed the major protein peak and the peak activity for the plasma membrane marker at 1.17 g cm?3, however, there was also significant overlap with a mitochondrial [cytochrome c oxidase (EC 1.9.3.1)] peak at 1.18 g cm?3, Smaller peaks of the Golgi markers were seen at 1.14 g cm?3. Analyses of marker enzymes for ER and mitochondria (EC 1.6.99.3) showed little contamination of the membranes of presumptive secretory vesicles from these sources, and the lack of significant vanadate-insensitive ATPase activity in the density range from 1.13–1.18 g cm?3 in either fractionation scheme suggests that these membranes do not include material from the tonoplast. The coincidence of markers for Golgi and plasma membrane with from the tonoplast. The coincidence of markers for Golgi and plasma membrane with the membranes of sonicated, dense vesicles, at a density slightly lower than that of plasma membranes prepared from the same cells, supports the possibility that membranes en route to the plasma membrane are incompletely differentiated. 相似文献
7.
In homogenates of stem sections from etiolated pea (Pisum sativum L.) seedlings, secretory vesicles can be separated from Golgi-apparatus cisternae by rate-zonal centrifugation in renografin gradients. Optically, two bands of turbidity are observed, the uppermost containing the secretory vesicles and the lower one the Golgi-apparatus cisternae. The absence of glutaraldehyde in the homogenizing medium has allowed the effective characterization of marker-enzyme activities. Golgi-apparatus cisternae have been recognized by the presence of inosine-diphosphatase and glucan-synthase I activities as well as by electron microscopy. In contrast, although secretory vesicles also bear inosine diphosphatase they do not appear to possess glucan-synthase activity. Three plasma-membrane markers, NPA-binding, glucan synthase II, and KCl,Mg2+-adenosine triphosphatase (pH 6.5), were not detected in secretory vesicles. Pulse-chase experiments with [3H]glucose support our designation of secretory vesicles and Golgi-cisternal fractions.Abbreviations ER
endoplasmic reticulum
- GSI, GSII
glucan, synthase I, II, respectively
- IDPase
inosine diphosphatase
- PM
plasma membrane
- SV(s)
secretory vesicle(s) 相似文献
8.
D. J. Stelzner 《Cell and tissue research》1971,120(3):332-345
Summary Routine electron microscopy and a zinc iodide-osmium tetroxide technique (ZIO), recently found to be specific for synaptic vesicles, were used to study the origin of synaptic vesicles during postnatal development in the lumbosacral enlargement of the albino rat. In immature nervous tissue, a large number of vesicles, indistinguishable from synaptic vesicles (S vesicles), were found in the Golgi apparatus and in different portions of the axon where they were often intermingled with elements of the smooth endoplasmic reticulum (SER). Ten to twenty percent of these S vesicles within the Golgi apparatus as well as the majority of these vesicles in all parts of the axon were positive to ZIO. Much of the SER in axons was also positive. The number of vesicles and elements of the SER showed some decrease in the non-terminal portion of axons on day 21 and even more of a decrease in adult neurons. These data suggest that synaptic vesicles are produced in the Golgi apparatus and SER in immature neurons. The decrease in S vesicles and SER in adult neurons suggests a drop in synaptic vesicle production after synaptogenesis has ended. In addition, the material that has been studied shows that ZIO staining is not limited to synaptic vesicles during development since oligodendroglia and endothelial cells are also stained during this period. 相似文献
9.
Ariane Droscher 《Glycoconjugate journal》1998,15(8):733-736
1998 is the year of the centenary of the discovery of the Golgi apparatus. This event is considered in its historical context: the first cell theory of 1838–1839, the first polemics in cytology and the research on the cell organelles at the turn of the century. The first approaches to clarify the physiological significance of the apparatus is traced from Golgi (1909) to Bowen (1929). 相似文献
10.
It has been established that inositol 1,4,5-trisphosphate(IP3) is responsible for the mobilization of calcium(Ca2+) from intracellular locations in a wide variety of tissues, and that this response triggers the stimulation of several hormones and neurotransmitters. However, these phenomena have yet to be examined in the mammary epithelium. Ca2+ uptake from the medium into the endoplasmic reticulum(ER) and Golgi apparatus in vitro in both pregnant and lactating mouse mammary epithelial cells was studied and a strong Ca2+ release from these organelles into the medium with the use of IP3 was shown. The Ca2+ uptake and its release due to IP3 was also usually greater during pregnancy than lactation. 相似文献
11.
Christian Riebeling Andrew J. Morris Dennis Shields 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(9):876-880
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and fusion events. Here we summarize recent advances in the understanding of the role of phospholipase D at the Golgi apparatus. 相似文献
12.
Hawes C 《The New phytologist》2005,165(1):29-44
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated. 相似文献
13.
The differentiation of urothelial cells is characterized by the synthesis of uroplakins and their assembly into the asymmetric
unit membrane. The Golgi apparatus (GA) has been proposed to play a central role in asymmetric unit membrane formation. We
have studied the distribution and organization of the GA in normal mouse urothelial cells and in the superficial urothelial
cells that undergo differentiation following cyclophosphamide-induced regeneration, in correlation with urothelial cell differentiation.
In normal urothelium, immature basal cells have a simple GA, which is small and distributed close to the nucleus. In intermediate
cells, the GA starts to expand into the cytoplasm, whereas the GA of terminally differentiated umbrella cells is complex,
being large and spread over the whole basal half of the cytoplasm. During early stages of regeneration after cyclophosphamide
treatment, the GA of superficial cells is simple and no markers of urothelial differentiation (uroplakins or asymmetric unit
membranes, discoidal or fusiform vesicles, apical surface covered with microvilli) are expressed. At a later stage, the GA
expands and, in the final stage of regeneration, when cells express all markers of terminal urothelial differentiation, the
GA become complex once again. Our results show that: (1) GA distribution and organization in urothelial cells is differentiation-dependent;
(2) the GA matures from a simple form in partially differentiated cells to a complex form in terminally differentiated superficial
cells; (3) major rearrangements of GA distribution and organization correlate with the beginning of asymmetric unit membrane
production. Thus, GA maturation seems to be crucial for asymmetric unit membrane formation.
The work was supported by the Ministry of Education and Sport, Government of Republic of Slovenia, Slovenia (grant no. 3311-04-831450). 相似文献
14.
Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma membrane (PM) proteins: Pma1p, Mid2p and Gap1*p as baits. We compared the lipidomes of the immunoisolated vesicles with each other and with the lipidomes of the donor compartment, the trans-Golgi network, and the acceptor compartment, the PM, using a quantitative mass spectrometry approach that provided a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation. 相似文献
15.
Targeting of proteins to the Golgi apparatus 总被引:5,自引:0,他引:5
The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recyclingtrans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field. 相似文献
16.
Tommy Nilsson 《FEBS letters》2009,583(23):3764-38340
The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of an in vitro transport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport. 相似文献
17.
Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block.
下载免费PDF全文

We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells. 相似文献
18.
Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network 总被引:6,自引:1,他引:5
We studied the role of cholesterol in regulated protein secretion in neuroendocrine cells by manipulating the cholesterol content of AtT-20 cells. Depletion of cellular cholesterol levels caused a reversible block of immature secretory granule biogenesis at the level of the trans -Golgi-network, whereas increased cholesterol levels promoted immature secretory granule formation. Cholesterol depletion also blocked the formation of constitutive secretory vesicles, but did not inhibit the transport between the endoplasmic reticulum and the Golgi complex. Our results indicate that the assembly of cholesterol-based lipid microdomains is required for the biogenesis of both regulated and constitutive secretory vesicles from the trans -Golgi-network in neuroendocrine cells. 相似文献
19.
Guy Brugerolle Eric Viscogliosi 《Biology of the cell / under the auspices of the European Cell Biology Organization》1994,81(3):277-285
Summary— In parabasalid flagellates, trichomonads and hypermastigids, the stack of cisternae of the Golgi apparatus are supported by striated roots attached to the basal bodies of flagella forming the so-called parabasal apparatus. Monoclonal antibodies raised for several trichomonad species, Monocercomonas, Trichomonas and Tetratrichomonas, label the parabasal fibre in immunofluorescence or immunogold staining and protein bands in immunoblotting. Several antibodies cross-react between trichomonad species, and one of them labels the homologous parabasal fibre in the hypermastigids: Trichonympha, Joenia, Pseudotrichonympha and Holomastigotoides. Considering the molecular mass range of the labelled proteins (100–135 kDa) and the lack of antibody cross-reactivity with the striated root proteins (centrin, assemblin, kinetodesmal protein, ciliary root proteins of epithelial ciliated cells) of other organisms, these proteins recognized by these antibodies seem to represent a new class of protein forming striated roots. The occurrence and significance of parabasal organization in eukaryogenesis is discussed. 相似文献
20.
Cytokinesis in plants involves both the formation of a new wall and the partitioning of organelles between the daughter cells.
To characterize the cellular changes that accompany the latter process, we have quantitatively analyzed the cell cycle-dependent
changes in cell architecture of shoot apical meristem cells of Arabidopsis thaliana. For this analysis, the cells were preserved by high-pressure freezing and freeze-substitution techniques, and their Golgi
stacks, multivesicular bodies, vacuoles and clathrin-coated vesicles (CCVs) characterized by means of serial thin section
reconstructions, stereology and electron tomography techniques. Interphase cells possess ∼35 Golgi stacks, and this number
doubles during G2 immediately prior to mitosis. At the onset of cytokinesis, the stacks concentrate around the periphery of
the growing cell plate, but do not orient towards the cell plate. Interphase cells contain ∼18 multivesicular bodies, most
of which are located close to a Golgi stack. During late cytokinesis, the appearance of a second group of cell plate-associated
multivesicular bodies coincides with the onset of CCV formation at the cell plate. During this period a 4× increase in CCVs
is paralleled by a doubling in number and a 4× increase in multivesicular bodies volume. The vacuole system also undergoes
major changes in organization, size, and volume, with the most notable change seen during early telophase cytokinesis. In
particular, the vacuoles form sausage-like tubular compartments with a 50% reduced surface area and an 80% reduced volume
compared to prometaphase cells. We postulate that this transient reduction in vacuole volume during early telophase provides
a means for increasing the volume of the cytosol to accommodate the forming phragmoplast microtubule array and associated
cell plate-forming structures. 相似文献