首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The singnificance of the zinc hydroxide–Thr-199–Glu-106 hydrogen-bond network in the active site of human carbonic anhydrase II has been examined by X-ray crystallographic analyses of site-specific mutants. Mutants with Ala-199 and Ala-106 or Gln-106 have low catalytic activities, while a mutant with Asp-106 has almost full CO2 hydration activity. The structures of these four mutants, as well as that of the bicarbonate complex of the mutant with Ala-199, have been determined at 1.7 to 2.2 Å resolution. Removal of the γ atoms of residue 199 leads to distorted tetrahedral geometry at the zine ion, and a catalytically important zinc-bound water molecule has moved towards Glu-106. In the bicarbonate complex of the mutant with Ala-199 one oxygen atom from bicarbonate binds to zinc without displacing this water molecule. Tetrahedral coordination geometries are retained in the mutants at position 106. The mutants with Ala-106 and Gln-106 have a zinc-bound sulfate ion, whereas this sulfate site is only partially occupied in the mutant with Asp-106. The hydrogen-bond network seems to be “reversed” in the mutants with Ala-106 and Gln-106. The network is preserved as in native enzyme in the mutant with Asp-106 but the side chain of Asp-106 is more extended than that of Glu-106 in the native enzyme. These results illustrate the importance of Glu-106 and Thr-199 for controlling the precise coordination geometry of the zinc ion and its ligand preferences with results in an optimal orientation of a zine-bound hydroxide ion for an attack on the CO2 substrate. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Substitution of Pro for Thr199 in the active site of human carbonic anhydrase II (HCA II)(1) reduces its catalytic efficiency about 3000-fold. X-ray crystallographic structures of the T199P/C206S variant have been determined in complex with the substrate bicarbonate and with the inhibitors thiocyanate and beta-mercaptoethanol. The latter molecule is normally not an inhibitor of wild-type HCA II. All three ligands display novel binding interactions to the T199P/C206S mutant. The beta-mercaptoethanol molecule binds in the active site area with its sulfur atom tetrahedrally coordinated to the zinc ion. Thiocyanate binds tetrahedrally coordinated to the zinc ion in T199P/C206S, in contrast to its pentacoordinated binding to the zinc ion in wild-type HCA II. Bicarbonate binds to the mutant with two of its oxygens at the positions of the zinc water (Wat263) and Wat318 in wild-type HCA II. The environment of this area is more hydrophilic than the normal bicarbonate-binding site of HCA II situated in the hydrophobic part of the cavity normally occupied by the so-called deep water (Wat338). The observation of a new binding site for bicarbonate has implications for understanding the mechanism by which the main-chain amino group of Thr199 acquired an important role for orientation of the substrate during the evolution of the enzyme.  相似文献   

3.
The X-ray crystal structures of 5-amino-1,3,4-thiadiazole-2-sulfonamide (the acetazolamide precursor) and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide in complex with the human isozyme II of carbonic anhydrase (CA, EC 4.2.1.1) are reported. The thiadiazole-sulfonamide moiety of the two compounds binds in the canonic manner to the zinc ion and interacts with Thr199, Glu106, and Thr200. The substituted phenyl tail of the second inhibitor was positioned in the hydrophobic part of the binding pocket, at van der Waals distance from Phe131, Val 135, Val141, Leu198, Pro202, and Leu204. These structures may help in the design of better inhibitors of these widespread zinc-containing enzymes.  相似文献   

4.
The structure of human erythrocytic carbonic anhydrase II has been refined by constrained and restrained structure–factor least-squares refinement at 2.0 Å resolution. The conventional crystallographic R value is 17.3%. Of 167 solvent molecules associated with the protein, four are buried and stabilize secondary structure elements. The zinc ion is ligated to three histidyl residues and one water molecule in a nearly tetrahedral geometry. In addition to the zinc-bound water, seven more water molecules are identified in the active site. Assuming that Glu-106 is deprotonated at pH 8.5, some of the hydrogen bond donor–acceptor relations in the active site can be assigned and are described here in detail. The Oγ1 atom of Thr-199 donates its proton to the Oε1 atom of Glu-106 and can function as a hydrogen bond acceptor only in additional hydrogen bonds.  相似文献   

5.
The human genetic variant carbonic anhydrase I (CA I) Michigan 1 results from a single point mutation that changes His 67 to Arg in a critical region of the active site. This variant of the zinc metalloenzyme appears to be unique in that it possesses an esterase activity that is specifically enhanced by added free zinc ions. We have determined the three-dimensional structure of human CA I Michigan 1 by X-ray crystallography to a resolution of 2.6 A. In the absence of added zinc ions, the mutated residue, Arg 67, points out of the active site, hydrogen bonding with the carboxylate of Asn 69. This contrasts with the orientation of His 67, in the native isozyme, which points into the active site. The orientations of His 94, His 96, and His 119, that coordinate the catalytic zinc ion, and of the catalytically critical Thr 199-Glu 106 hydrogen bonding system, are largely unchanged in the mutant. The structure of an enzyme adduct with a second zinc bound was determined to a resolution of 2.0 A. The second zinc ion is coordinated to His 64, His 200, and Arg 67. This arginine residue reverses its orientation on zinc binding and turns into the active site. The residues at these three positions have been implicated in determining the specific kinetic properties of native CA I. This is, to our knowledge, the first example of a zinc ion coordinating with an arginine residue in a Zn(II) enzyme.  相似文献   

6.
The binding of four inhibitors--mercuric ion, 3-acetoxymercuri-4-aminobenzenesulfonamide (AMS), acetazolamide (Diamox), and thiocyanate ion--to human carbonic anhydrase II (HCA II) has been studied with X-ray crystallography. The binding of mercury to HCA II at pH 7.0 has been investigated at 3.1 A resolution. Mercuric ions are observed at both nitrogens in the His-64 ring. One of these sites is pointing toward the zinc ion. The only other binding site for mercury is at Cys-206. The binding of the two sulfonamide inhibitors AMS and Diamox, has been reinvestigated at 2.0 and 3.0 A, respectively. Only the nitrogen of the sulfonamide group binds to the zinc ion replacing the hydroxyl ion. The sulfonamide oxygen closest to the zinc ion is 3.1 A away. Thus the tetrahedral geometry of the zinc is retained, refuting earlier models of a pentacoordinated zinc. The structure of the thiocyanate complex has been investigated at pH 8.5 and the structure has been refined at 1.9 A resolution using the least-squares refinement program PROLSQ. The crystallographic R factor is 17.6%. The zinc ion is pentacoordinated with the anion as well as a water molecule bound in addition to the three histidine residues. The nitrogen atom of the SCN- ion is 1.9 A from the zinc ion but shifted 1.3 A with respect to the hydroxyl ion in the native structure and at van der Waals' distance from the O gamma l atom of Thr-199. This is due to the inability of the O gamma l atom of Thr-199 to serve as a hydrogen bond donor, thus repelling the nonprotonated nitrogen. The SCN- molecule reaches into the deep end of the active site cavity where the sulfur atom has displaced the so-called "deep" water molecule of the native enzyme. The zinc-bound water molecule is 2.2 A from the zinc ion and 2.4 A from the SCN- nitrogen. In addition, this water is hydrogen bonded to the O gamma l atom of Thr-199 and to another water molecule. We have observed that solvent and inhibitor molecules have three possible binding sites on the zinc ion and their significance for the catalysis and inhibition of HCA II will be discussed. All available crystallographic data are consistent with a proposed catalytic mechanism in which both the OH moiety and one oxygen of the substrate HCO3- ion are ligated to the zinc ion.  相似文献   

7.
In this study, 45 bisindolylmethanes having sulfonamide moiety had been synthesized through 3 steps. In vitro assay for inhibition of carbonic anhydrase showed that some of the compounds having sulfonamide moiety are capable of inhibiting carbonic anhydrase II. Bisindoles having halogens at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. The results obtained from in vitro inhibitory activity were subjected through 3D QSAR and docking studies to identify important features contributing to the activity and further improve the structure. Pharmacophore studies suggest that bisindolylmethane moiety is contributing significantly towards the inhibition activity. Docking studies showed that compounds having nitro substituent (5g and 5i) were found to be able interact with Zn2+ ion, Thr199, His94, His96, and His119, which interferes with the ZnOHThr199Glu106 hydrogen bond network. Bulky nitro substituent at ortho position for compound 5g prevents the compound from interacting with other residues like Thr199 and Thr200. Methyl substituent at ortho position for Compound 5i induces less steric hindrance effect, thus allowing second oxygen atom of sulfonamide to interact with Thr199 (2.51 Å). Hydrogen bonding between NH on indole ring with Glu69 might have increased stability of ligand-receptor complex.  相似文献   

8.
The structures of human carbonic-anhydrase-II complexes with the anionic inhibitors hydrogen sulphide (HS-) and nitrate (NO3-) have been determined by X-ray diffraction at 0.19-nm resolution from crystals soaked at pH 7.8 and 6.0, respectively. The modes of binding of these two anions differ markedly from each other. The strong inhibitor HS- replaces the native zinc-bound water/hydroxide (Wat263) leaving the tetrahedral metal geometry unaltered and acts as a hydrogen-bonding donor towards Thr199 gamma. The weak NO3- inhibitor does not displace Wat263 from the metal coordination but occupies a fifth binding site changing the zinc coordination polyhedron into a slightly distorted trigonal bipyramid. The interaction of NO3- with the metal is weak; the nearest of its oxygen atoms being at a distance of 0.28 nm from the zinc ion. The binding of nitrate to the enzyme is completed by a hydrogen bond to the metal coordinated Wat263 and a second one to a water molecule of the active-site cavity. The structures of the two complexes help to rationalize the binding of anionic inhibitors to carbonic anhydrase and the binding mode displayed by NO39 may be relevant to the catalytic mechanism.  相似文献   

9.
In order to obtain a better structural framework for understanding the catalytic mechanism of carbonic anhydrase, a number of inhibitor complexes of the enzyme were investigated crystallographically. The three-dimensional structure of free human carbonic anhydrase II was refined at pH 7.8 (1.54 A resolution) and at pH 6.0 (1.67 A resolution). The structure around the zinc ion was identical at both pH values. The structure of the zinc-free enzyme was virtually identical with that of the native enzyme, apart from a water molecule that had moved 0.9 A to fill the space that would be occupied by the zinc ion. The complexes with the anionic inhibitors bisulfite and formate were also studied at neutral pH. Bisulfite binds with one of its oxygen atoms, presumably protonized, to the zinc ion and replaces the zinc water. Formate, lacking a hydroxyl group, is bound with its oxygen atoms not far away from the position of the non-protonized oxygen atoms of the bisulfite complex, i.e. at hydrogen bond distance from Thr199 N and at a position between the zinc ion and the hydrophobic part of the active site. The result of these and other studies have implications for our view of the catalytic function of the enzyme, since virtually all inhibitors share some features with substrate, product or expected transition states. A reaction scheme where electrophilic activation of carbon dioxide plays an important role in the hydration reaction is presented. In the reverse direction, the protonized oxygen of the bicarbonate is forced upon the zinc ion, thereby facilitating cleavage of the carbon-oxygen bond. This is achieved by the combined action of the anionic binding site, which binds carboxyl groups, the side-chain of threonine 199, which discriminates between hydrogen bond donors and acceptors, and hydrophobic interaction between substrate and the active site cavity. The required proton transfer between the zinc water and His64 can take place through water molecules 292 and 318.  相似文献   

10.
N-Hydroxysulfamide is a 2000-fold more potent inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to sulfamide. It also inhibits other physiologically relevant isoforms, such as the tumor-associated CA IX and XII (K(I)s in the range of 0.865-1.34microM). In order to understand the binding of this inhibitor to the enzyme active site, the X-ray crystal structure of the human hCA II-N-hydroxysulfamide adduct was resolved. The inhibitor coordinates to the active site zinc ion by the ionized primary amino group, participating in an extended network of hydrogen bonds with amino acid residues Thr199, Thr200 and two water molecules. The additional two hydrogen bonds in which N-hydroxysulfamide bound to hCA II is involved as compared to the corresponding adduct of sulfamide may explain its higher affinity for the enzyme, also providing hints for the design of tight-binding CA inhibitors possessing an organic moiety substituting the NH group in the N-hydroxysulfamide structure.  相似文献   

11.
N-Hydroxyurea binds both to carbonic anhydrase (CA) and to matrix metalloproteinases (MMPs). X-ray crystallography showed N-hydroxyurea to bind in a bidentate mode by means of the oxygen and nitrogen atoms of the NHOH moiety to the Zn(II) ion of CA, participating in a network of hydrogen bonds with a water molecule and Thr199. A derivatized N-hydroxyurea showed low-micromolar affinity for several CAs. This simple zinc binding function may be exploited for obtaining potent metalloenzyme inhibitors, due to its versatility of binding to the metal ion present in the active site of such enzymes.  相似文献   

12.
The X-ray crystallographic structure for the adduct of an activator with human carbonic anhydrase isozyme I (hCA I) is reported. L-Histidine binds deep within the enzyme active site, participating in a network of hydrogen bonds involving its carboxylate moiety and the zinc-bound water molecule, as well as the imidazole of His200, being in van der Waals contacts with Thr199, His200, His64, and His67. This binding is very different from that to the other major cytosolic isozyme hCA II.  相似文献   

13.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with a topically acting antiglaucoma sulfonamide (the 2-N,N-diethylaminoethylamide of 5-(4-carboxybenzenesulfonamido-1,3,4-thiadiazole-2-sulfonamide), has been resolved at a resolution of 1.6A. This compound is a very potent inhibitor of the physiologically most relevant isozyme hCA II for the secretion of aqueous humor within the eye K(I) of 1.4 nM), and in animal models of glaucoma showed very effective intraocular pressure (IOP) lowering after topical administration. Surprisingly, the inhibitor bound within the enzyme active site is in the sulfonylimido-4H- delta(2)-1,3,4-thiadiazoline tautomeric form. The inhibitor is directly bound to the Zn(II) ion of the enzyme through the deprotonated primary sulfonamide moiety, participating to the classical hydrogen bond network involving residues of the zinc-binding function and Thr 199 and Glu 106. The 1,3,4-thiadiazoline fragment of the inhibitor makes two hydrogen bonds with the active site residue Thr 200, the secondary sulfonamide moiety makes two hydrogen bonds involving a water molecule and the residue Gln 92, whereas the phenyl ring of the inhibitor participates to an edge-to-face interaction with the phenyl ring of Phe 131, the two cycles being almost perfectly perpendicular to each other. The tertiary amine fragment of the carboxamido tail and the carboxamido moiety itself make hydrogen bonds with water molecules present at the rim of the active site entrance and van der Waals contacts with His 4, Trp 5, and Phe 20. All these multiple interactions never evidenced previously in CA-sulfonamide complexes, explain the very high affinity of this inhibitor for the hCA II active site and may allow further optimization of this class of inhibitors.  相似文献   

14.
New compounds containing a novel zinc binding group (salicylaldoxime system) were identified as effective inhibitors of carbonic anhydrases (CAs). This structural motif seems to bind the catalytic zinc ion of CAs, revealing itself as a new valid alternative to the sulfonamide group. Computational procedures were used to investigate the binding mode of this class of compounds, within the active site of CAII. This study suggests that the salicylaldoxime moiety binds the zinc ion through the oxime oxygen atom that also forms an H-bond with T199. The results herein obtained will allow the development of new CA-inhibitors bearing the salicylaldoxime moiety.  相似文献   

15.
Eleven amino acid substitutions at Val-121 of human carbonic anhydrase II including Gly, Ala, Ser, Leu, Ile, Lys, and Arg, were constructed by site-directed mutagenesis. This residue is at the mouth of the hydrophobic pocket in the enzyme active site. The CO2 hydrase activity and the p-nitrophenyl esterase activity of these CAII variants correlate with the hydrophobicity of the residue, suggesting that the hydrophobic character of this residue is important for catalysis. The effects of these mutations on the steady-state kinetics for CO2 hydration occur mainly in kcat/Km and Km, consistent with involvement of this residue in CO2 association. The Val-121----Ala mutant, which exhibits about one-third normal CO2 hydrase activity, has been studied by x-ray crystallographic methods. No significant changes in the mutant enzyme conformation are evident relative to the wild-type enzyme. Since Val-121 is at the mouth of the hydrophobic pocket, its substitution by the methyl side chain of alanine makes the pocket mouth significantly wider than that of the wild-type enzyme. Hence, although a moderately wide (and deep) pocket is important for substrate association, a wider mouth to this pocket does not seriously compromise the catalytic approach of CO2 toward nucleophilic zinc-bound hydroxide.  相似文献   

16.
The crystal structure analysis of horse liver alcohol dehydrogenase has been extended to 2.4 Å resolution. From the corresponding electron density map of the apoenzyme we have determined the positions of the 374 amino acids in the polypeptide chain of each subunit.The coenzyme binding domain of the subunit comprises residues 176 to 318. 45% of these residues are helical and 32% are in the central six-stranded pleated sheet structure. The positions and orientations of the helices with respect to the pleated sheet indicate a possible folding mechanism for this part of the subunit structure. The coenzyme analogue ADP-ribose binds to this domain in a position and orientation very similar to coenzyme binding to lactate dehydrogenase. The adenine part binds in a hydrophobic pocket, the adenosine ribose is hydrogen-bonded to the side chain of Asp223, the pyrophosphate is positioned by interaction with Arg47 and the nicotinamide ribose is 6Å away from the catalytic zinc atom.The catalytic domain is mainly built up from three distinct antiparallel pleated-sheet regions. Residues within this domain provide ligands to the catalytic zinc atom; Cys46, His67 and Cys174. An approximate tetrahedral coordination of this zinc is completed by a water molecule or hydroxyl ion depending on the pH. Residues 95 to 113 form a lobe that binds the second zinc atom of the subunit. This zinc is liganded in a distorted tetrahedral arrangement by four sulphur atoms from the cysteine residues 97, 100, 103 and 111. The lobe forms one side of a significant cleft in the enzyme surface suggesting that this region might constitute a second catalytic centre of unknown function.The two domains of the subunit are separated by a crevice that contains a wide and deep hydrophobic pocket. The catalytic zinc atom is at the bottom of this pocket, with the zinc-bound water molecule projecting out into the pocket. This water molecule is hydrogen-bonded to the side chain of Ser48 which in turn is hydrogen-bonded to His51. The pocket which in all probability is the binding site for the substrate and the nicotinamide moiety of the coenzyme, is lined almost exclusively with hydrophobic side chains. Both subunits contribute residues to each of the two substrate binding pockets of the molecule. The only accessible polar groups in the vicinity of the catalytic centre are Ser48 and Thr178 apart from zinc and the zinc-bound water molecule.  相似文献   

17.
Carbonic anhydrase is inhibited by the “metal poison” cyanide. Several spectroscopic investigations of carbonic anhydrase where the natural zinc ion has been replaced by cobalt have further strengthened the view that cyanide and cyanate bind directly to the metal. We have determined the structure of human carbonic anhydrase II inhibited by cyanide and cyanate, respectively, by X-ray crystallography. It is shown that the inhibitors replace a molecule of water, which forms a hydrogen bond to the peptide nitrogen of Thr-199 in the native structure. The coordination of the zinc ion is hereby left unaltered compared to the native crystal structure, so that the zinc coordinates three histidines and one molecule of water or hydroxyl ion in a tetrahedral fashion. The binding site of the two inhibitors is identical to what earlier has been suggested to be the position of the substrate (CO2) when attacked by the zinc bound hydroxyl ion. The peptide chain undergoes no significant alterations upon binding of either inhibitor. © 1993 Wiley-Liss, Inc.  相似文献   

18.
N-1-(4-Sulfamoylphenyl)-N-4-pentafluorophenyl-thiosemicarbazide was prepared by the reaction of 4-isothiocyanato-benzenesulfonamide with pentafluorophenyl hydrazine, and proved to be an effective inhibitor of several isozymes of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), such as CA I, II, and IX. Against the physiologically relevant isozymes hCA II and hCA IX, the compound showed inhibition constants in the range of 15-19 nM, whereas it was less effective as a hCA I inhibitor (K(I) of 78 nM). The high-resolution X-ray crystal structure of its adduct with hCA II showed the inhibitor to bind within the hydrophobic half of the enzyme active site, making extensive and strong van der Waals contacts with amino acid residues Gln92, Val121, Phe131, Leu198, Thr200, Pro202, in addition to the coordination of the sulfonamide nitrogen to the Zn(II) ion of the active site, and participation of the SO(2)NH(2) group to a network of hydrogen bonds involving residues Thr199 and Glu106. These results are helpful for the design of better CA II or CA IX inhibitors based on the thioureido-benzenesulfonamide motif, with potential applications as anti-glaucoma or anti-cancer drugs.  相似文献   

19.
A complex of carbonic anhydrase (CA) with one of its substrates, bicarbonate, has been studied crystallographically. Human isoenzyme II was mutated at position 200 from threonine to histidine, which results in higher affinity for bicarbonate. The HCO ion binds in the active site to the zinc ion as a pseudo-bidentate ligand which gives the metal a coordination geometry between tetrahedral and trigonal bipyramide. The water/hydroxide normally bound with tetrahedral coordination to the zinc is probably replaced by the OH group of the bicarbonate ion. The importance of residues Thr-199 and Glu-106 in controlling the binding orientation of HCO is discussed as well as the catalytic mechanism. Both the complex as well as the uncomplexed mutant were studied at 1.9 Å resolution. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N‐terminal “glutaminase” (GAT) and C‐terminal “synthetase” domain. The enzyme is identified as a potential target for anti‐cancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H‐bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)‐substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non‐catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site. Proteins 2016; 84:360–373. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号