首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium butyrate affects cell differentiation in confluent epidermal keratinocyte cultures by considerably increasing the spontaneous formation of cross-linked envelopes in normal human keratinocytes (NHK). It also favors the development of envelope competence in the Simian virus-40 (SV-40)-transformed human foreskin keratinocyte line SV-K14. It completely abolishes the inhibitory effect of serum and retinoic acid on the expression of plasma membrane-associated transglutaminase. However, other markers of epidermal differentiation that are also under the control of retinoids such as keratins or the enzyme cholesterol sulfotransferase are not affected by butyrate. The level of the cellular retinoic acid binding protein (CRABP) is considerably increased in its presence. Butyrate does not interfere with the binding of retinoids to their cellular binding proteins. Our observations suggest that sodium butyrate stimulates cornified envelope formation via the induction of the plasma membrane-associated transglutaminase required for cornified envelope synthesis and, additionally, by abolishing the inhibitory effect of retinoids on the expression of this enzyme.  相似文献   

2.
During formation of the stratum corneum (SC) barrier, terminally differentiated keratinocytes continue their maturation process within the dead superficial epidermal layer. Morphological studies of isolated human corneocytes have revealed differences between cornified envelopes purified from the deep and superficial SC. We used atomic force microscopy to measure the mechanical properties of native human corneocytes harvested by tape‐stripping from different SC depths. Various conditions of data acquisition have been tested and optimized, in order to obtain exploitable and reproducible results. Probing at 200 nN allowed us to investigate the total stiffness of the cells (at 50 nm indentation) and that of the cornified envelopes (at 10 to15 nm), and lipid envelopes (at 5 to 10 nm). The obtained data indicated statistically significant differences between the superficial (more rigid) and deep (softer) corneocytes, thus confirming the existence of depth and maturation‐related morphological changes within the SC. The proposed approach can be potentially used for minimally invasive evaluation of various skin conditions such as aging, skin hydration, and pathologies linked to SC.  相似文献   

3.
R H Rice  H Green 《Cell》1979,18(3):681-694
Late in the terminal differentiation of epidermis and cultured epidermal cells, a protein envelope located beneath the plasma membrane becomes cross-linked by cellular transglutaminase. The process of cross-linking can be initiated in cultured epidermal cells by agents affecting cell membrane permeability--nonionic detergents, high salt concentrations and ionophores. These agents initiate the cross-linking process by making calcium ions available to the transglutaminase. A soluble precursor of the cross-linked envelope has been identified in crude extracts of cultured epidermal cells by its ability to incorporate labeled amines through the action of transglutaminase. The protein has been purified to homogeneity by gel filtration and chromatography on columns of DEAE-cellulose and hydroxyapatite. Comprising an estimated 5--10% of the soluble cell proteins, it has a molecular weight of about 92,000, is isoelectric at pH 4.5 +/- 0.3 and has an unusual amino acid composition (46% Glx residues). It is chemically and immunochemically unrelated to keratins. The following evidence confirms that the protein becomes incorporated into cross-linked envelopes: first, washed cross-linked envelopes bind antibody to the purified protein, as shown by indirect immunofluorescence; second, absorption of the antiserum with washed envelopes removes all detectable antibodies to the purified protein; and third, the protein cannot be extracted from keratinocytes after their envelopes have become cross-linked. Examination of sections of epidermis by immunofluorescence, using antiserum to the purified protein, reveals that in addition to the stratum corneum, the living cells of the outer half of the spinous layer react strongly. The envelope precursor is present in the cytoplasm, but becomes concentrated at the cell periphery, where it will be cross-linked later, when the cells have passed through the granular layer. The protein is also concentrated in a peripheral location in cultured epidermal cells.  相似文献   

4.
The cornified envelope is assembled from transglutaminase cross-linked proteins and lipids in the outermost epidermal layers and is essential for skin barrier function. Involucrin, envoplakin, and periplakin form the protein scaffold on which the envelope assembles. To examine their combined function, we generated mice deficient in all three genes. The triple knockouts have delayed embryonic barrier formation and postnatal hyperkeratosis (abnormal accumulation of cornified cells) resulting from impaired desquamation. Cornified envelopes form but are ultrastructurally abnormal, with reduced lipid content and decreased mechanical integrity. Expression of proteases is reduced and the protease inhibitor, serpina1b, is highly upregulated, resulting in defective filaggrin processing and delayed degradation of desmoglein 1 and corneodesmosin. There is infiltration of CD4+ T cells and a reduction in resident γδ+ T cells, reminiscent of atopic dermatitis. Thus, combined loss of the cornified envelope proteins not only impairs the epidermal barrier, but also changes the composition of T cell subpopulations in the skin.  相似文献   

5.
Covalently cross-linked protein is the key feature of the cornified envelope, an important marker of squamous differentiation. Enumeration of cornified envelopes is widely used to assess keratinocyte differentiation, but is tedious and subjective. We report here a rapid, objective, sensitive, and quantitative assay that measures total cross-linked protein in keratinocytes. The method is based on the resistance of cross-linked protein to solubilization in boiling SDS-beta ME, separation of cross-linked from soluble protein by collection of cross-linked protein on sheets of regenerated cellulose, binding of Coomassie blue to protein, and quantitation by scanning laser densitometry. There is excellent correlation between the cross-linked protein measured by this assay and the number of cornified envelopes.  相似文献   

6.
7.
Summary Proteins which are major substrates of epidermal transglutaminases can be identified in cultured keratinocytes of human, cow, and new-born rat.Cow and human keratinocytes both contain substrate proteins which are 30000 to 50000 daltons in size but dissociable in SDS to 12000 daltons or less. In both species these proteins correspond to in vivo synthesized proteins which are probable precursors of cornified envelope. Human keratinocytes synthesize a 125000 dalton protein which is also a precursor of cornified envelope both in cells and tissue. By SDS electrophoresis two 100000 dalton substrate proteins are seen in cow keratinocyte extracts and a 23000 dalton substrate protein is seen in rat keratinocyte extracts. Minor substrates of transglutaminase are seen in human keratinocytes, and one has been isolated by preparative electrophoresis. Major structural proteins of epidermis which are in vitro substrates of epidermal transglutaminase include the keratins and the stratum corneum basic protein.  相似文献   

8.
1. A monoclonal antibody (HCE-2) to human epidermal and epithelial cornified envelopes identified a group of soluble basic protein precursors. 2. Using HCE-2, envelope-like staining was observed in the epidermis and stratified squamous epithelium of a number of mammalian species. 3. Basic polypeptides reactive to HCE-2 varied in size and number among the different animals. 4. In those species studied, HCE-2-reactive peptides were substrates for transglutaminase and protease treatment of cornified envelopes released HCE-2-reactive degradation products. 5. These results suggest a new family of proteins in mammalian epidermis that may function as cornified envelope precursors.  相似文献   

9.
The cytochrome P450 CYP2B19 is a keratinocyte-specific arachidonic acid epoxygenase expressed in the granular cell layer of mouse epidermis. In cultured keratinocytes, CYP2B19 mRNAs are up-regulated coordinately with those of profilaggrin, another granular cell-specific marker. We investigated effects of the CYP2B19 metabolites 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) on keratinocyte transglutaminase activities and cornified cell envelope formation. Keratinocytes were differentiated in vitro in the presence of biotinylated cadaverine. Transglutaminases cross-linked this substrate into endogenous proteins in situ; an enzyme-linked immunosorbent assay was used to quantify the biotinylated proteins. Exogenously added or endogenously formed 14,15-EET increased transglutaminase cross-linking activities in cultured human and mouse epidermal keratinocytes in a modified in situ assay. Transglutaminase activities increased approximately 8-fold (p < or = 0.02 versus mock control) in human keratinocytes transduced with adenovirus particles expressing a 14S,15R-EET epoxygenase (P450 BM3v). The physiological transglutaminase substrate involucrin was preferentially biotinylated in situ, determined by immunoblotting and mass spectrometry. P450 BM3v-induced transglutaminase activation was associated with increased 14,15-EET formation (p = 0.002) and spontaneous cell cornification (p < or = 0.001). Preferential involucrin biotinylation and the increased cornified cell envelope formation provided evidence that transglutaminases mediated the P450 BM3v-induced cross-linking activities. These results support a physiological role for 14,15-EET epoxygenases in regulating epidermal cornification, and they have important implications for epidermal barrier functions in vivo.  相似文献   

10.
Terminal differentiation of cultured human epidermal cells.   总被引:46,自引:0,他引:46  
H Green 《Cell》1977,11(2):405-416
Three aspects of terminal differentiation of the epidermal keratinocyte have been studied in cell culture—the development of detergent-insoluble cytoplasmic filaments, the formation of a cornified cell envelope and the destruction of the cell nucleus.In the presence of lethally irradiated 3T3 cells, single human epidermal keratinocytes grow into stratified colonies. After the colonies become confluent, the culture enters a steady state in which the upper cells are shed from the surface of the cell layer like stratum corneum cells in vivo and are replaced by the proliferation of dividing cells in the basal layer. The cells shed into the medium are flattened and elongated squames, and are insoluble in solutions of sodium dodecylsulfate. Since the squames usually detach before their nuclei are digested, the cultures behave like some wet-surfaced, stratified squamous epithelia in that they possess little or no anucleate stratum corneum. The rates of proliferation and squame detachment in confluent cultures are increased by the presence of epidermal growth factor.Most of the squames harvested from the medium are permeable to trypan blue. The permeable squames may or may not have a visible nucleus, but squames not permeable to trypan blue nearly always possess a nucleus. When freshly detached squames containing nuclei are incubated in medium containing serum, their nuclei are digested and disappear within a few days. On the other hand, if the squames are washed and incubated in serum-free medium, their nuclei are not digested. This suggests that the permeable cell membrane permits a serum component essential for nuclear digestion to enter the cytoplasm.When growing colonies of epidermal keratinocytes are disaggregated and the cells suspended in medium containing methyl cellulose, they cannot multiply, but within a few days the cells become permeable to trypan blue and insoluble in sodium dodecylsulfate. This insolubility is due to disulfide linking of the proteins of the abundant cytoplasmic filaments, for the filaments are dissolved when β-mercaptoethanol is added as well, leaving the emptied cornified cell envelopes. Nuclear digestion follows some days later. In the absence of serum, cells become permeable and develop detergent-insoluble filaments and a cornified envelope, but, as in the case of spontaneously detached squames of surface cultures, their nuclei are not destroyed. Purified plasminogen supports nuclear destruction, whereas serum depleted of plasminogen does not.Earlier studies on intact skin have suggested that chemical gradients between epidermis and dermis might be responsible for the differentiation of the epidermal cells. In surface culture, basal cells multiply and nonbasal cells undergo terminal differentiation, even though all the cells are bathed in the same medium and the terminally differentiating cells have, if anything, better access to the medium than do the basal cells. Differentiation also begins in virtually all singly suspended cells uniformly exposed to the medium. The program of differentiation is therefore independent of the orientation of any chemical gradients in the cellular environment. Cell-cell contacts are not required for the development of detergent insolubility, the formation of the cornified envelope or the process of nuclear digestion, although they are essential for the formation of flattened squames. Unlike proliferation, which is strongly dependent upon fibroblast products, terminal differentiation proceeds in the absence of fibroblast support.  相似文献   

11.
Robert H. Rice  Howard Green 《Cell》1977,11(2):417-422
A small proportion of the protein of stratum corneum of human epidermal callus is insoluble even when boiled in solutions containing sodium dodecylsulfate and a reducing agent. This protein is present in the cornified envelope, a structure located beneath the plasma membrane. When cornified envelopes were dissolved by exhaustive proteolytic digestion and the products analyzed by chromatography, approximately 18% of the total lysine residues were found as the cross-linking dipeptide ?-(γ-glutamyl) lysine.Labeled cornified envelope protein was synthesized by human epidermal keratinocytes allowed to differentiate terminally in culture. The extent of cross-linking, determined from the proportion of radioactive lysine in ?-(γ-glutamyl) lysine after exhaustive proteolysis, was similar to that in stratum corneum. The properties of the cornified envelopes (insolubility in detergent and reducing agents, and solubility following proteolytic digestion) are readily explained by a structure consisting of a cross-linked protein lattice.  相似文献   

12.
The epidermal cornified cell envelope (CE) is a 15 nm thick layer of highly insoluble protein that is assembled on the intracellular surface of the cell membrane during terminal differentiation, and comprises about 10% of the mass of the cornified dead layers of the tissue. The CE consists of a complex amalgam of several known proteins that are crosslinked by isodipeptide bonds formed by the action of transglutaminases, but little is known about their order of accretion during CE assembly, or how they are crosslinked. In this paper, CEs purified from human foreskin epidermis were examined by immunogold electron microscopy before and after digestion with proteases.The mass fractions of the proteins remaining in CE remnants during digestion were estimated from the amino acid compositions by mathematical modelling. Together, the data support a new model for the complex hierachical structure of the CE. The cytoplasmic surface of intact purified CEs consists of filaggrin, loricrin, SPRs and keratin intermediate filaments. The bulk of the CE consists of a mixture of loricrin (75%) and SPRs (5%). Following removal of most of these, the novel protein elafin is exposed, which contributes about 6% of CE mass. The protein material on the inner CE 'core' adjacent or attached to the lipid envelope consists of cystatin alpha (5%), involucrin (2%), keratin filaments (3%) and possibly other as yet unidentified protein(s)(2-5%). This model supports but considerably extends an earlier extant hypotheis for CE structure, and thus provides the basis for further detailed biochemical and ultra-structural studies.  相似文献   

13.
14.
The squamous cell carcinoma line, SqCC/Y1, like natural squamous epithelia, forms a cornified cell envelope during differentiation which can be directly correlated with an increase in particulate transglutaminase activity. When transglutaminase is activated in these cells by calcium ionophore X-537A, annexin I and involucrin become incorporated into the cornified cell envelope and cannot be extracted with solutions containing sodium dodecyl sulfate (SDS) and beta-mercaptoethanol. This effect is specific for annexin I; thus, the amounts of annexins II and IV that were extractable from cells by SDS and beta-mercaptoethanol did not change following treatment with ionophore X-537A. Annexin I could be cross-linked in vitro to itself and to other endogenous proteins by transglutaminase extracted from the particulate fraction of SqCC/Y1 cells. Immunofluorescence studies showed that cross-linked annexin I and involucrin form an envelope-like structure in SqCC/Y1 cells during differentiation that cannot be extracted by EGTA and Triton X-100. The amount of staining of this envelope structure corresponded directly to the particulate transglutaminase activity of these cells. Annexin I monoclonal and polyclonal antibodies were shown to bind to purified cornified cell envelopes from SqCC/Y1. These studies suggest that particulate transglutaminase regulates a function of annexin I during the differentiation of SqCC/Y1 cells by covalently cross-linking this protein into the cornified cell envelope.  相似文献   

15.
A STUDY OF THE COMPONENTS OF THE CORNIFIED EPITHELIUM OF HUMAN SKIN   总被引:1,自引:3,他引:1       下载免费PDF全文
Pulverized cornified epithelium of human skin was divided into a "soluble fraction" and a "residue." About half of the "soluble fraction" proved to be soluble epidermal keratin (keratin A); the remainder, dialyzable substances of low molecular weight. The "residue" contained epidermal keratin and resistant cell membranes of cornified cells. Epidermal keratin was found to form an oriented and dense submicroscopic structure in the cornified cells. It showed high resistance toward strong acid and moderately strong alkali solutions as well as concentrated urea. In strong alkali, reducing substances, alkaline urea, and mixtures of reducing substance with alkali, epidermal keratin dissociated and yielded a non-dialyzable derivative of high molecular weight (keratin B) which resembled true proteins. The cell membranes of cornified cells showed higher resistance toward strong alkali and reducing substance than did epidermal keratin.  相似文献   

16.
Summary A431 malignant keratinocytes, although derived from a muco-cutaneous carcinoma of the vulva, fail to achieve terminal epidermal differentiation in culture as shown by their inability to form cornified envelopes. Even after culture in a serum-free medium (MCDB 153) containing no retinoic acid and a high (10−3 M) calcium concentration (conditions known to facilitate epidermal differentiation), the cells do not become competent as shown by the fact that subsequent treatment with a calcium ionophore is unable to provoke the formation of cornified envelopes. Nevertheless, A431 cells are able to synthesize the envelope precursor involucrin. The block in formation of cornified envelopes is thus not due to a lack in involucrin. The results described here suggest that the absence of cross-linking of this molecule is due to a lowered epidermal membrane-bound transglutaminase activity in A431 cells, enhances involucrin accumulation in these cells, although in normal human keratinocytes it stimulates growth and reduces involucrin synthesis. These results suggest that involucrin synthesis is triggered by the arrest of growth. EDITOR'S STATEMENT The A431 cell line has been used extensively in the study of EGF receptors and effects, and recently has been employed in studies of surface membrane receptors for other factors, as well as studies of extracellular matrix synthesis and deposition and tumor promoter activities. The expanding use of A431 cells calls for a more thorough understanding of the cell type it represents and the degree to which it represents a general in vitro model of normal or neoplastic epidermal cells. This article addresses some of these questions.  相似文献   

17.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

18.
Extracellular calcium (Cao) and the steroid hormone 1,25(OH)2D, induce the differentiation of human epidermal cells in culture. Recent studies suggest that increases in intracellular free calcium (Cai) levels may be an initial signal that triggers keratinocyte differentiation. In the present study, we evaluated cornified envelope formation, the terminal event during keratinocyte differentiation, and correlated it with changes in the Cai levels during differentiation of keratinocytes in culture induced by Cao or 1,25(OH)2D. Keratinocytes were grown in different Cao concentrations (0.1 or 1.2 mM) or in the presence of 1,25(OH)2D (10(-11) to 10(-7) M), and the Cai levels were measured using the fluorescent probe Indo-1. Our results suggest that the induction of cornified envelope formation is associated with an increase in Cai level during calcium-induced differentiation. Cao and the calcium ionophore ionomycin acutely increased Cai and cornified envelope formation. In contrast, the effect of 1,25(OH)2D on increasing Cai levels and stimulating cornified envelope formation was long-term, requiring days of treatment with 1,25(OH)2D. Our data are consistent with other recent studies and support the hypothesis that Cao regulates keratinocyte differentiation primarily by acutely increasing their Cai levels. The role of calcium in the mechanism of action of 1,25(OH)2D on keratinocyte differentiation is less clear. The increase in Cai of keratinocytes during 1,25(OH)2D induced differentiation may be essential for or subsequent to its prodifferentiation effects.  相似文献   

19.
Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function. Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, notably in atopic dermatitis and psoriasis. Keratinocyte nuclear degradation is not well characterised, and it is unclear whether the retained nuclei contribute to the altered epidermal differentiation seen in eczema and psoriasis. Loss of AKT1 function strongly correlated with parakeratosis both in eczema samples and in organotypic culture models. Although levels of DNAses, including DNase1L2, were unchanged, proteomic analysis revealed an increase in Lamin A/C. AKT phosphorylates Lamin A/C, targeting it for degradation. Consistent with this, Lamin A/C degradation was inhibited and Lamin A/C was observed in the cornified layer of AKT1 knockdown organotypic cultures, surrounding retained nuclear material. Using AKT-phosphorylation-dead Lamin A constructs we show that the retention of nuclear material is sufficient to cause profound changes in epidermal terminal differentiation, specifically a reduction in Loricrin, Keratin 1, Keratin 10, and filaggrin expression. We show that preventing nuclear degradation upregulates BMP2 expression and SMAD1 signalling. Consistent with these data, we observe both parakeratosis and evidence of increased SMAD1 signalling in atopic dermatitis. We therefore present a model that, in the absence of AKT1-mediated Lamin A/C degradation, DNA degradation processes, such as those mediated by DNAse 1L2, are prevented, leading to parakeratosis and changes in epidermal differentiation.Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function.1, 2, 3 Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, but most notably in the epidermal barrier-defective diseases eczema and psoriasis.4, 5 Mechanisms of nuclear degradation in the epidermis have not yet been well characterised and it is not known whether the retained nuclei contribute to the altered epidermal differentiation programmes seen in these skin diseases.6, 7It is surprising that, for such a critical component of epidermal terminal differentiation, relatively few molecular mechanisms inducing parakeratosis have been investigated. The caspase-14 knockout mouse develops parakeratotic plaques upon chemical barrier disruption8 and has subtle defects in epidermal terminal differentiation, including filaggrin processing,9 whereas the DNAse 1L2 knockout mouse showed constitutive nuclear retention in hair and nails, which led to structural abnormalities in the hair shaft.10, 11 Parakeratosis also occurs during wound healing.12 Nuclei are retained in the scab of healing wounds, and this correlates with the expression of different keratins and altered structural protein expression in this region.13Although taken together this is suggestive that retained nuclei can influence epidermal and adnexal differentiation by signalling to these structures, there is no direct evidence that this is the case. We have already identified AKT1 as an important signalling molecule in epidermal terminal differentiation. Loss of AKT1 causes cornified envelope fragility, and reduces the barrier function of the cornified layer.14, 15 We therefore wanted to test the hypothesis that AKT1 caused this fragility by preventing nuclear degradation in the cornified layer. Organotypic culture of keratinocytes, in which AKT1 has been silenced by specific shRNA, retained nuclei in the cornified layer. We show here that shRNA knockdown (kd) of AKT1 prevents phosphorylation and subsequent degradation of nuclear lamins. Furthermore, expression of non-degradable lamins leads to upregulation of BMP2-SMAD1-mediated signalling and keratinocyte terminal differentiation changes.  相似文献   

20.
The cornified envelope: a model of cell death in the skin   总被引:1,自引:0,他引:1  
The epidermis functions as a barrier against the environment by means of several layers of terminally differentiated, dead keratinocytes - the cornified layer, which forms the endpoint of epidermal differentiation and death. The cornified envelope replaces the plasma membrane of differentiating keratinocytes and consists of keratins that are enclosed within an insoluble amalgam of proteins, which are crosslinked by transglutaminases and surrounded by a lipid envelope. New insights into the molecular mechanisms and the physiological endpoints of cornification are increasing our understanding of the pathological defects of this unique form of programmed cell death, which is associated with barrier malfunctions and ichthyosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号