首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Isolated rat lens capsules synthesized hydroxy[3H]proline-containing polypeptides when incubated with [3H]proline. 2. The collagenous polypeptides synthesized during a 2 h incubation were analyzed by both gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and shown to have an apparent mol.wt. of approx. 180,000. 3. No evidence was obtained for conversion of these polypeptides into a lower-molecular-weight species in experiments where capsules were labelled for 2 h and chased with non-radioactive proline for up to 22 h. However, a time-dependent incorporation of the 180,000-mol.wt. species into a larger collagenous component was observed and this could be prevented by the inclusion of beta-aminopropionitrile in the incubation medium. 4. The radioactive components synthesized by the capsules correspond to subunits of the intact lens capsule and the direct incorporation of the polypeptide of mol.wt. 180,000 into deoxycholate-insoluble basement membrane was demonstrated.  相似文献   

2.
Type X collagen, a product of hypertrophic chondrocytes.   总被引:14,自引:1,他引:13       下载免费PDF全文
The synthesis of collagen types IX and X by explants of chick-embryo cartilages was investigated. When sternal cartilage labelled for 24h with [3H]proline was extracted with 4M-guanidinium chloride, up to 20% of the 3H-labelled collagen laid down in the tissue could be accounted for by the low-Mr collagenous polypeptides (H and J chains) of type IX collagen; but no type X collagen could be detected. Explants of tibiotarsal and femoral cartilages were found to synthesize type IX collagen mainly in zones 1 and 2 of chondrocyte proliferation and elongation, whereas type X collagen was shown to be a product of the hypertrophic chondrocytes in zone 3. Pulse-chase experiments with tibiotarsal (zone-3) explants demonstrated a time-dependent conversion of type X procollagen into a smaller species whose polypeptides were of Mr 49 000. The processed chains [alpha 1(X) chains] were shown by peptide mapping techniques to share a common identity with the pro alpha 1(X) chains of Mr 59 000. No evidence for processing of type IX collagen was obtained in analogous pulse-chase experiments with sternal tissue. When chondrocytes from tibiotarsal cartilage (zone 3) were cultured on plastic under standard conditions for 4-10 weeks they released large amounts of type X procollagen into the medium. However, 2M-MgCl2 extracts of the cell layer were found to contain mainly the processed collagen comprising alpha 1(X) chains. The native type X procollagen purified from culture medium was shown by rotary shadowing to occur as a short rod-like molecule 148 nm in length with a terminal globular extension, whereas the processed species comprising alpha 1(X) chains of Mr 49 000 was detected by electron microscopy as the linear 148 nm segment.  相似文献   

3.
E D Adamson  S J Gaunt  C F Graham 《Cell》1979,17(3):469-476
A cloned line of undifferentiated teratocarcinoma cells (OC15S1) was either maintained as a homogeneous embryonal carcinoma (EC) cell population or was cultured under conditions where the cells differentiated into endoderm-like (END) cells. In this study we examine the synthesis of collagen in both EC and END cells. Cell cultures were incubated with tritiated proline and lysine, and the radioactive collagen secreted into the medium was extracted and purified or immunoprecipitated by antibodies to type IV collagen (Adamson and Ayers, 1979). Radioactive collagens were identified by electrophoretic mobility, by sensitivity to collagenase and to reduction, by insensitivity to pepsin, by cyanogen bromide peptides, and by aminoacid analyses of 3-hydroxyproline, 4-hydroxyproline and proline. OC15S1 EC cells were found to synthesize several collagenous polypeptides, of which 60–70% of the radioactivity was like that of basement membrane (type IV) collagen. Type I-like collagen was the main collagenous product of END cells, but a minor product of EC cells. We concluded that type IV collagen synthesis was suppressed during the differentiation of EC cells to END, while type I-like synthesis was increased. Similarly, other EC cell lines produced mainly type IV-like collagen polypeptides (PC13, F9, PSA1), and following the formation of END cells, two lines produced mainly type I-like collagen polypeptides (PC13, C145b). The type of endoderm formed on embryoid bodies, however, presents an alternate route of differentiation, since immunoperoxidase tests showed that it was synthesizing significant amounts of type IV collagen. We discuss the significance of these findings in relation to a similar change which occurs during normal development.  相似文献   

4.
Mature periodontal tissues from adult-mouse first mandibular molars were cultured in a continuous-flow organ-culture system which allowed the regulation of both ascorbic acid concentration and pO(2) (oxygen partial pressure). Protein synthesis was measured by analysing the incorporation of [(3)H]proline into collagenous and non-collagenous proteins during the last 24h of a 2-day culture. At low pO(2) [16.0kPa (approx. 120mmHg)] approx. 60% of protein-incorporated [(3)H]proline was found in collagenous proteins. However, it was evident that this collagen was considerably underhydroxylated. At high pO(2) [56.0kPa (approx. 420mmHg)], both the amount of collagen deposited in the tissues and the degree of hydroxylation were increased considerably. In contrast, no significant effect on non-collagenous protein was observed. Tissues cultured at low pO(2) for the first 48h were unable to respond to a subsequent increase in pO(2) during the last 24h. Analysis of pepsin-solubilized collagen alpha-chains labelled with [(14)C]glycine demonstrated the synthesis of both type-I and type-III collagens by explants cultured for 48h at high pO(2). Type-III collagen comprised 20-30% of the radioactivity in alpha-chains in both the periodontal ligament and the tissues of the alveolar process. The pattern of protein synthesis in the alveolar tissues at high pO(2) was similar to that observed in these tissues in vivo. However, in the cultured periodontal ligament the proportions of non-collagenous proteins and type-III collagens were increased in comparison with the tissue in vivo.  相似文献   

5.
We decided to study the effect of glucose deprivation on collagen metabolism in MCF7 cells. The incorporation of [3H]‐proline into collagenase‐sensitive and hydroxyproline‐containing proteins was used as an index of collagen synthesis, whereas pulse—chase technique was employed to evaluate the degradation of newly synthesized proteins. The MCF7 cells incubated in high glucose medium synthesized detectable amounts of collagenous proteins. Most of them were found in the cell layer. The shortage of glucose resulted in about 30% reduction in collagen synthesis. The pulse—chase experiments demonstrated that proportionally less collagen was degraded in cultures incubated in low‐glucose than in high‐glucose media.  相似文献   

6.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

7.
A technique is described for the rapid isolation of highly purified preparations of viable glomeruli from rat kidney cortex. The synthesis of protein as judged by the incorporation of [14C]proline into non-diffusible material was shown to be linear for up to 6 h. The synthesis of collagen, measured as non-diffusible 4-hydroxy[14C]proline, was also linear over this period but represented only a small proportion of total protein synthesis. Similar studies conducted in vivo confirmed that collagen synthesis accounted for less than 5% of total protein synthesis in glomeruli. When isolated glomeruli were incubated with [14C]proline, it was found that approximately 16% of the hydroxyproline present in the collagenous component occurred as the 3-isomer. When glomeruli were incubated with [14C]lysine over 90% of the hydroxy[14C]lysine synthesised was glycosylated and most of the glycosylated hydroxy[14C]lysine was present as glucosyl-galactosyl-hydroxy[14C]lysine. The size of the basement membrane collagen synthesised by the isolated glomeruli was estimated by treating the 14C-labelled protein with mercaptoethanol and sodium dodecyl sulphate and then chromatographing the 14C-labelled protein on an agarose column equilibrated and eluted with buffer containing 0.1% (w/v) sodium dodecyl sulphate. The initial form of [14C]collagen synthesised was found to consist of polypeptide chains which had molecular weights of approximately 140 000 and which were shown to be distinctly larger than the polypeptide chains from embryonic chick tendon procollagen. Also when glomeruli were labelled with [14C]proline for 2 h and chased with unlabelled proline for 4 h there was a time-dependent conversion of the initially synthesised collagen moiety to collagen polypeptide chains which co-chromatograph with tendon pro-alpha chains (molecular weight approx. 120 000).  相似文献   

8.
[3H]Proline-labeled nascent procollagen chains were isolated from chick tendon polysome preparations as peptidyl-tRNA complexes by ion exchange chromatography. Proline hydroxylation of the nascent chains was at least 40% complete, based on radioactive hydroxyproline/proline ratios. These data provide the first direct evidence that hydroxylation of procollagen proline residues does occur on nascent chains. The electrophoretic profiles of [3H]proline-labeled nascent chains and of unlabeled nascent chains visualized by Western blotting with 35S-labeled monoclonal antibodies to the alpha 1(I) N-propeptide or the C-propeptides indicate that there are pauses in the translation of procollagen alpha-chains in the intact cells. Approximately 25% of the radioactivity associated with [3H]proline-labeled polysomes was in fully elongated but underhydroxylated (relative to secreted procollagen) pro-alpha-chains. The association of these completely elongated but only partially modified procollagen chains with the polysome complex may facilitate the carboxyl-terminal interactions which lead to triple helix formation.  相似文献   

9.
Cells from the cysts of patients with autosomal dominant polycystic kidney disease (PKD) were grown in vitro under standard conditions without the aid of collagen-pretreated surfaces, and both the synthesis and composition of the extracellular matrix were investigated. At confluence, PKD cells presented the typical features of epithelial cells, but showed a different collagen composition from fibroblasts. Compared with normal tubular epithelia (NTE), PKD monolayers produced an excess of extracellular matrix, which accounted for 30% of the total incorporation of [3H] proline, although this value was considerably lower (by a factor of 10) in the case of NTE. Immunohistochemical and electrophoretic techniques revealed a complex collagen composition in the extracellular matrix which included [alpha (III)]3 and collagen IV. However, part of the collagen components remained unidentified in spite of the fact that they exhibited a typical M(r) of alpha 1(I) and alpha 2(I) in the presence of urea. Immunoprecipitation with monospecific antibodies and Northern blotting with specific probes failed to recognize alpha 1(I) and alpha 2(I), but demonstrated their presence in fibroblasts. Purification and cyanogen bromide digestion demonstrated a strong interhomology in fingerprint peptide composition among the uncharacterized collagens synthesized by PKD cells, thus suggesting a common identity. These observations document a markedly augmented production of extracellular matrix by PKD cultured cells in vitro, and show the presence of collagens which do not share homologies with the major collagen molecules. A better characterization of extracellular matrix composition is central to any comprehension of the cytogenetic mechanisms in vivo.  相似文献   

10.
11.
Embryonic-chick tendon poly(A)-containing RNA was translated in the wheat-germ and mRNA-dependent rabbit reticulocyte-lysate systems. The ability of each system to synthesize polypeptides similar to pro-alpha chains of collagen was tested on the bases of electrophoretic mobility and susceptibility to highly purified bacterial collagenase. Very small amounts of polypeptides in the size range of pro-alpha chains were synthesized in the wheat-germ system, whereas efficient synthesis of two polypeptides similar to pro-alpha1 and pro-alpha2 chains was achieved in the reticulocyte lysate. The collagenous nature of the major high-molecular-weight products synthesized was demonstrated by their susceptibility to collagenase and ability to act as a substrate for purified collagen proline hydroxylase. Determinations of the relative amounts of these translation products suggest that the 2:1 ratio of pro-alpha1 and pro-alpha2 chains found in type I procollagen is reflected in proportional amounts of translatable mRNA for pro-alpha1 and pro-alpha2 chains. Comparisons of the electrophoretic mobilities of hydroxylated and unhydroxylated reticulocyte-lysate translation products were made with appropriate standards of hydroxylated and unhydroxylated procollagen polypeptides. The results suggest that, in common with a number of secreted proteins, procollagen is synthesized as pre-pro molecules consistent with the ;Signal Hypothesis'.  相似文献   

12.
Scorbutic guinea pigs were wounded and the influence of administering ascorbic acid 6 days later was studied with respect to cellular morphology, ribosomal distribution and protein synthesis. Electron-microscopic studies revealed that the dilated endoplasmic reticulum observed in the fibroblasts of scorbutic wound tissue had reverted to a normal configuration 24h after intraperitoneal injection of 100mg of ascorbate. Quantitative determination of the distribution of free and membrane-bound ribosomes indicated a significant increase in membrane-bound ribosomes in wound tissue from ascorbate-supplemented (recovery) animals. Sucrose-density-gradient centrifugation indicated a significant increase in the proportion of large membrane-bound polyribosomes in the range 300-350S and a concomitant decrease in 80S monoribosomes in the ribosome sedimentation profile of recovery tissue. Determination of the synthesis of non-diffusible [(3)H]hydroxyproline in scorbutic and recovery wounds showed a 3-4-fold stimulation in peptidyl-proline hydroxylation in recovery tissues. Studies carried out in which scorbutic and recovery tissues were incubated with [(14)C]leucine indicated that general protein synthesis, as measured by (14)C incorporated into non-diffusible material/mug of DNA, was unaltered by ascorbate supplementation. Similar studies of [(3)H]proline incorporation suggested that in recovery tissues there was a small but significant increase in [(3)H]proline incorporated/mug of DNA, which probably represents an increase in protocollagen synthesis. This observation correlates well with the increase seen in recovery tissues of large polyribosomes on which collagen precursor polypeptides are known to be synthesized. Preliminary characterization of the repair collagen synthesized by recovery animals showed it to be a typical Type I collagen having the chain composition (alpha(1))(2)alpha(2). The extent of glycosylation of the hydroxylysine of the newly synthesized collagen was greater than that reported for either normal guinea-pig dermal collagen or dermal scar collagen.  相似文献   

13.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. the results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased the amount of [3H]hydroxyproline synthesized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and secretion of procollagen.  相似文献   

14.
The present paper describes how epithelial cells, cultured from bovine anterior lens capsule explants, synthesize and secrete procollagen type IV polypeptide chains alpha 1(IV) and alpha 2(IV). Metabolic labeling of these cells with [14C]proline for different time intervals and subsequent analysis by SDS/polyacrylamide gel electrophoresis revealed the presence of two polypeptide chains with apparent molecular masses of 180 kDa and 170 kDa. The procollagens were bacterial-collagenase-sensitive and were specifically immunoprecipitated by antibodies raised against the 7S domain of type IV collagen. Type IV procollagen poly(A)-rich RNA was isolated from cultured lens capsule cells and translated in a reticulocyte lysate cell-free system. Two polypeptides with apparent molecular masses of 152 kDa and 145 kDa were identified as procollagen type IV unmodified chains by gel electrophoresis, collagenase digestion and specific immunoprecipitation. During experiments in which cells were labeled in the presence of alpha, alpha'-bipyridyl, type IV procollagen appeared as one major band comigrating with a 145 kDa polypeptide on SDS-gel electrophoresis.  相似文献   

15.
The lens capsule is a specialized thickened basement membrane that completely surrounds the lens and provides anchoring sites for zonules, the filamentous bodies that suspend the lens. Like other basement membranes, the lens capsule contains collagen IV, which is a family of six polypeptides, subunits alpha1(IV)-alpha6(IV), each of which is encoded by a distinct gene. We have investigated the presence of collagen IV subunits in the developing lens capsule by using confocal immunohistochemistry and antibodies against each of the six collagen IV subunits. In murine embryos, subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV) were detected in the basement membrane surrounding the lens vesicle, and they persisted in the capsule until adulthood. In contrast, neither collagen alpha3(IV) nor alpha4(IV) was detected in the lens capsule until 2 weeks postnatal. Similarly, we detected no collagen alpha3(IV) or alpha4(IV) in lens capsules of 54-day human embryos, while collagen alpha3(IV) and alpha4(IV) were detected in adult humans. Thus, in the lens capsule, there is a developmental shift in detectable collagen IV subunits; early in development we observed subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV), which is consistent with the presence of fibrillar [alpha1alpha1alpha2] and elastic [alpha5alpha5alpha6] protomers, but later in development components of the more cross-linked [alpha3alpha4alpha5] protomer appear. An elastic lens capsule may be necessary in order to accommodate rapid lens growth in early development, whereas later in development a stronger, more cross-linked capsule may be necessary in order to tolerate the stress caused by postnatal accommodation and disaccommodation of the lens.  相似文献   

16.
An increase in collagen synthesis by hepatic parenchymal cells (hepatocytes) was observed during 8 days in primary culture by the quantification of total [3H]hydroxyproline as a marker of total collagen synthesis and the ratio of [3H]hydroxyproline in the high-molecular-weight fraction to total [3H]hydroxyproline as a marker of collagen degradation after incubation of the cells with [3H]proline for 24 h. Type analysis of the collagen produced by the cells after 8 days in culture showed the presence of type I and type III collagens in addition to the components corresponding to type IV and type V (alpha A and alpha B) collagens. Only the latter two types were found in the collagens produced by the cells after 2 days in primary culture. The purity of the hepatocytes inoculated was 97%, and the majority of the contaminating small cells were erythrocytes. The rate of serum albumin synthesis, which is a typical function of the hepatocytes, was constant or increased during the culture period. Immuno-electron microscopic observation indicated the production of type I collagen by the hepatocytes after 8 days in primary culture. These results are explained only by the activation of collagen synthesis in the day-8 hepatocytes in primary culture.  相似文献   

17.
Previously, several proline analogs have shown to be incorporated into protein and, in particular, into procollagen polypeptides. Here a new technique was used to determine the extent to which two proline analogs, cis-4-hydroxy-l-proline and cis-4-fluoro-l-proline, replaced proline and hydroxyproline in newly synthesized pro-α and pro-γ chains of procollagen. Matrix-free chick embryo tendon cells, when incubated with 1.53 mm, cis-4-hydroxy-l-proline, synthesized collagenous polypeptides in which from 13 to 19% of the total imino acid residues were replaced with the analog. Incubation of cells with 1.50 mm, cis-4-fluoro-l-proline resulted in the synthesis of polypeptides in which 27% of the imino acid residues were replaced by the analog. With lower concentrations, proportionally less of the analog was incorporated into protein. The observations here extend previous indications that proline analogs in relatively low concentrations may have a specific effect on the synthesis of collagen.  相似文献   

18.
Rate of basement membrane biosynthesis as an index to angiogenesis   总被引:6,自引:0,他引:6  
A method was developed for assessing collagenous protein biosynthesis from [U-14C]proline in relation to angiogenesis in the chick chorioallantoic membrane (CAM). The rate of collagenous protein biosynthesis both in vitro and in vivo was maximum between days 8 and 11 of chick embryo development. This was the stage of maximum angiogenesis as shown by morphological evaluation of the vascular density. At day 10 the rate of collagenous protein biosynthesis was 11-fold higher than that of day 15, when angiogenesis had reached a plateau. The collagenous protein formed by CAM co-elutes on SDS-agarose chromatography with the collagenous component of [3H]-acetylated-basement membrane (BM) from bovine lens capsule. 8,9-dihydroxy-7-methyl-benzo[b]quinolizinium bromide (GPA1734), which was shown previously to be a specific inhibitor of BM collagen biosynthesis, caused about 80% reduction in collagenous protein synthesis by CAM. These results indicate that most of the collagenous protein synthesized by CAM was BM collagen and this can be used as a biochemical index of angiogenesis.  相似文献   

19.
Electrophoretic analyses of the products of cell-free translation of elastin mRNA isolated from 17-day chick-embryo thoracic arteries have demonstrated that the elastin mRNA codes for polypeptides that are slightly larger than the cellular tropoelastin polypeptides synthesized and secreted by matrix-free artery cells. Pulse-chase experiments with cells labelled with [3H]proline established that newly synthesized tropoelastin polypeptides were associated solely with membrane-bound particulate fractions. Cell-free translation of membrane-bound and free polyribosomes isolated from artery cells revealed that the tropoelastin mRNA was associated predominantly with the membrane-bound fraction. When rough-microsomal fractions, isolated from cells labelled with [3H]proline for 10 min, were treated with proteinases in the presence and in the absence of detergent, the nascent tropoelastin polypeptides were shown to be susceptible to proteolysis only when the integrity of the membranes was destroyed by detergent treatment. In similar experiments tropoelastin polypeptides synthesized by membrane-bound polyribosomes in the nuclease-treated reticulocyte lysate were also resistant to the proteolytic-enzyme treatment. The results suggest that tropoelastin polypeptides are synthesized on membrane-bound polyribosomes and discharged into the lumen of the endoplasmic reticulum with co-translational removal of a signal peptide.  相似文献   

20.
The secretion of tropoelastin by chick-embryo artery cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Chymotryptic fingerprint analyses of tropoelastin a and tropoelastin b demonstrated a very close relationship between these two polypeptides synthesized in a cell-free system under the direction of chick-embryo polyribosomal mRNA. A similar study on tropoelastin polypeptides extracted in their hydroxylated and under-hydroxylated forms from artery cells incubated with [3H]valine in the absence and presence of alpha alpha'-bipyridine or 3,4-dehydroproline confirmed this close relationship and suggested that tropoelastins a and b are likely to be the products of a single gene. Pulse-chase experiments in which the synthesis and secretion of tropoelastin by artery cells were monitored demonstrated that, after a pulse with [3H]proline, the polypeptides rapidly appeared in the medium and the half-time of tropoelastin secretion was approx. 30 min. Further pulse-chase studies, in which [3H]tropoelastin contents of subcellular fractions were determined, showed that rough and smooth microsomal fractions contained maximal amounts of tropoelastin at different times. The quantity of tropoelastin in the smooth-microsomal fraction was always only a small proportion of that in the rough-microsomal fraction, suggesting rapid translocation of the polypeptides to the plasma membrane. Incubation of the cells with 0.1 mM-colchicine did not markedly alter the rate of secretion or the distribution of tropoelastin between the subcellular fractions, whereas when 1 microM-monensin was included in the incubations the polypeptides were retained in the rough microsomal fraction. The results are consistent with the proposal that tropoelastin may follow a pathway of secretion from rough endoplasmic reticulum to the plasma membrane via secretory vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号