首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavonoids are main polyphenolic groups widely distributed to fruits, vegetables and beverages we consumed daily. They exhibit many biological effects. We tested tyrosinase inhibitor potential of structurally related (19) flavonoids and found that all the tested materials possessed tyrosinase inhibitory effect compared to the positive control, kojic acid. 2 exhibited the strongest tyrosinase inhibitory effect with an IC50 value of 40.94 ± 0.78 µM in a competitive manner. According to kinetic analysis 1, 4 and 7 were found to be competitive inhibitors, 3, 5, and 6 noncompetitive inhibitors of tyrosinase. According to the docking studies, A and C ring of the flavonoid structure, hydroxyl substituent at the 7th position, and hydroxyl substituents at para or para and meta position of ring B play key role for competitive inhibition of the enzyme.  相似文献   

2.
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.  相似文献   

3.
Bark of Quercus coccifera is widely used in folk medicine. We tested tyrosinase and α-glucosidase inhibitory effects of Q. coccifera bark extract and isolated compounds from it. The extract inhibited tyrosinase with an IC50 value of 75.13 ± 0.44 µg/mL. Among the isolated compounds, polydatin (6) showed potent tyrosinase inhibition compared to the positive control, kojic acid, with an IC50 value of 4.05 ± 0.30 µg/mL. The Q. coccifera extract also inhibited α-glucosidase significantly with an IC50 value of 3.26 ± 0.08 µg/mL. (-)-8-Chlorocatechin (5) was the most potent isolate, also more potent than the positive control, acarbose, with an IC50 value of 43.60 ± 0.67 µg/mL. According to the kinetic analysis, 6 was a noncompetitive and 5 was a competitive inhibitor of tyrosinase, and 5 was a noncompetitive α-glucosidase inhibitor. In the light of these findings, we performed in silico molecular docking studies for 5 and 6 with QM/MM optimizations to predict their tyrosinase inhibition mechanisms at molecular level and search for correlations with the in vitro results. We found that the ionized form of 5 (5i) showed higher affinity and more stable binding to tyrosinase catalytic site than its neutral form, while 6 bound to the predicted allosteric sites of the enzyme better than the catalytic site.  相似文献   

4.
In an effort to develop new inhibitors of metallo-β-lactamases (MβLs), twenty-eight azolylthioacetamides were synthesized and assayed against MβLs. The obtained benzimidazolyl and benzioxazolyl substituted 119 specifically inhibited the enzyme ImiS, and 10 was found to be the most potent inhibitor of ImiS with an IC50 value of 15?nM. The nitrobenzimidazolyl substituted 2028 specifically inhibited NDM-1, with 27 being the most potent inhibitor with an IC50 value of 170?nM. Further studies with 10, 11, and 27 revealed a mixed inhibition mode with competitive and uncompetitive inhibition constants in a similar range as the IC50 values. These inhibitors resulted in a 2–4-fold decrease in imipenem MIC values using E. coli cells producing ImiS or NDM-1. While the source of uncompetitive (possibly allosteric) inhibition remains unclear, docking studies indicate that 10 and 11 may interact orthosterically with Zn2 in the active site of CphA, while 27 could bridge the two Zn(II) ions in the active site of NDM-1 via its nitro group.  相似文献   

5.
The kinetics of purified glycogen phosphorylase a from the muscle of the blue crab (Callinectes danae) were studied in the direction of glycogen synthesis, and in the direction of glycogen degradation with Pi or arsenate as substrates. The effects of AMP, UDPG, G-6-P, glucose, and arsenate on the appropriate systems were studied. AMP is an activator of the enzyme. Inhibition by UDPG with respect to Pi changes from noncompetitive to competitive when AMP is added; it changes from noncompetitive to mixed with respect to glycogen when AMP is added. G-6-P is a competitive inhibitor of G-1-P and arsenate. Inhibition by glucose with respect to glycogen changes from noncompetitive to competitive when AMP is added in the direction of glycogen breakdown; it is noncompetitive with respect to Pi. Arsenate is a competitive inhibitor with respect to Pi. The Km for AMP increases in the presence of UDPG, and decreases with increasing concentrations of Pi or glycogen. We propose a model in which the enzyme bears three interacting sites: an active site, an activator (AMP) site, and an inhibitor (glucose) site. The active site has three subsites: one for Pi, one for glycogen, and one for a glucose moiety which may be part of the substrates or inhibitors.  相似文献   

6.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli has the subunit structure α2β2 The enzyme contains six sulfhydryl groups, one per α chain and two per β chain, and no disulfides. The rates and extent of sulfhydryl group reactivity with 5,5′-dithiobis(2-nitrobenzoic acid) were compared in the free enzyme, the enzyme-CoA intermediate in the catalytic pathway, and a substrate analog-enzyme Michaelis complex. The analog used was acetylaminodesthio-CoA, a competitive inhibitor with respect to acetyl-CoA; the analog is not a substrate. The reactions were studied in the presence and absence of 10% glycerol. In the absence of glycerol, one sulfhydryl group reacted rapidly in the free enzyme and enzyme-CoA intermediate; relative to the free enzyme, the rate and number of subsequently reacting sulfhydryl groups were increased in the enzyme-CoA intermediate. In the presence of 10% glycerol, one sulfhydryl group reacted rapidly in the free enzyme, while two reacted rapidly in the enzyme-CoA compound; the rates and extents of subsequently reacting sulfhydryl groups were also enhanced in the enzyme-CoA compound. The data strongly suggested subunit interactions in the free enzyme and intermediate; glycerol abolished those interactions in the enzyme-CoA intermediate. In the absence of glycerol, sulfhydryl group reactivity in the Michaelis complex, enzyme-acetylaminodesthio-CoA, was similar to that in the free enzyme with one exception: One of the more slowly reacting sulfhydryl groups in the free enzyme reacted at a rate characteristic of the enzyme-CoA intermediate. The results obtained with N-ethylmaleimide were qualitatively similar. The fractional inactivation of the enzyme with N-ethylmaleimide as a function of sulfhydryl groups modified and the subunit location of those sulfhydryl groups indicated that the same sulfhydryl groups react in both enzyme species; however, those sulfhydryl groups reacted more rapidly in the enzyme-CoA compound. The data indicate both subunit interactions in the enzyme and characteristic conformational changes upon formation of an acyl-CoA-enzyme Michaelis complex and the enzyme-CoA intermediate.  相似文献   

7.
Flemingia philippinensis has been used throughout history to cure rheumatism associated with neutrophil elastase (NE). In this study, we isolated sixteen NE inhibitory flavonoids (116), including the most potent and abundant prenyl isoflavones (19), from the F. philippinensis plant. These prenyl isoflavones (2, 3, 5, 7, and 9) competitively inhibited NE, with IC50 values of 1.3–12.0 μM. In addition, they were reversible, simple, slow-binding inhibitors according to their respective parameters. Representative compound 3 had an IC50 = 1.3 μM, k3 = 0.04172 μM−1 min−1, k4 = 0.0064 min−1, and Kiapp = 0.1534 μM. The Kik/Kiv ratios (18.5 ∼ 24.6) for compound 3 were consistent with typical competitive inhibitors. The prenyl functionality of isoflavones significantly affected inhibitory potencies and mechanistic behavior by shifting the competitive mode to a noncompetitive one. The remaining flavonoids (1016) were confirmed as mixed type I inhibitors that preferred to bind free enzyme rather than the enzyme-substrate complex. Fluorescence quenching analyses indicated that the inhibitory potency (IC50) closely followed the binding affinity (KSV).  相似文献   

8.
A series of 4-functionalized phenyl-O-β-d-glycosides were designed, synthesized and evaluated as a new class of mushroom tyrosinase inhibitors. The results demonstrated that compounds 6a13a bearing a thiosemicarbazide moiety exhibited potent activities with IC50 values range from 0.31 to 52.8 μM. Particularly, compound 9a containing acetylated glucose moiety was found to be the most active molecule with an IC50 value of 0.31 μM. SARs analysis suggested that (1) the thiosemicarbazide moiety remarkably contributed to the increase of inhibitory effects on tyrosinase; (2) the configuration and bond type of sugar moiety also played a very important role in determining their inhibitory activities. The inhibition kinetics and inhibition mechanism study revealed that compound 9a was reversible and competitive type inhibitor, whereas compound 13a was reversible and competitive–uncompetitive mixed-II type inhibitor.  相似文献   

9.
10.
A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aβ self-aggregation as well as AChE-induced Aβ aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H2O2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer’s disease.  相似文献   

11.
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (110) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1?μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development.  相似文献   

12.
In the present study, we aimed to identify the tyrosinase enzyme inhibitory potential of Vinca major L. extract and its secondary metabolites. The extract possessed remarkable tyrosinase enzyme inhibitory effect with IC50 value of 20.39 ± 0.44 µg/mL compared to the positive control, kojic acid (IC50 8.56 ± 0.17 µg/mL). Compounds 1 and 5 were the most potent isolates with IC50 values of 32.41 ± 0.99 and 31.34 ± 0.75 µM, they were more potent than kojic acid (IC50: 60.25 ± 0.54 µM). Compound 2 also exhibited remarkable tyrosinase inhibition with an IC50 value of 64.51 ± 1.29 µM. An enzyme kinetics analysis revealed that 1 was a mixed-type, 2 and 5 were noncompetitive inhibitors. Using molecular docking, we predicted binding affinity and interactions of the compounds, which were in good alignment with a pharmacophore hypothesis generated out of a number of known tyrosinase inhibitors. The modelling studies underlined crucial interactions with the copper ions and residues around them such as Asn260, His263, and Met280.  相似文献   

13.
Two classes of inhibitors of histone methyltransferase I from calf thymus are reported. High concentrations (≧ 10 mM) of various alkyl or aralkyl amines and polyamines were inhibitory to the enzyme. Spermine and spermidine were among the most potent compounds in this group. The best monoamine inhibitor was 2-phenylethylamine, which gave 47% inhibition at 10 mM.The substituted phenanthridinium compound ethidium bromide was also an inhibitor of the enzyme. A number of analogs of ethidium bromide were tested, and the most potent compound (17) gave 50% inhibition at 0.125 mM. S-Adenosyl-l-ethionine (SAM) showed competitive inhibition of the enzyme as determined from a Lineweaver-Burke plot, while ethidium bromide was noncompetitive.  相似文献   

14.
Inhibition of α-glucosidase enzyme activity is a reliable approach towards controlling post-prandial hyperglycemia associated risk factors. During the current study, a series of dihydropyrano[2,3-c] pyrazoles (135) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 4, 22, 30, and 33 were found to be the potent inhibitors of the yeast α-glucosidase enzyme. Mechanistic studies on most potent compounds reveled that 1, 4, and 30 were non-competitive inhibitors (Ki = 9.75 ± 0.07, 46 ± 0.0001, and 69.16 ± 0.01 μM, respectively), compound 22 is a competitive inhibitor (Ki = 190 ± 0.016 μM), while 33 was an uncompetitive inhibitor (Ki = 45 ± 0.0014 μM) of the enzyme. Finally, the cytotoxicity of potent compounds (i.e. compounds 1, 4, 22, 30, and 33) was also evaluated against mouse fibroblast 3T3 cell line assay, and no toxicity was observed. This study identifies non-cytotoxic novel inhibitors of α-glucosidase enzyme for further investigation as anti-diabetic agents.  相似文献   

15.
Through a structure-based drug design project (SBDD), potent small molecule inhibitors of pyruvate carboxylase (PC) have been discovered. A series of α-keto acids (7) and α-hydroxycinnamic acids (8) were prepared and evaluated for inhibition of PC in two assays. The two most potent inhibitors were 3,3′-(1,4-phenylene)bis[2-hydroxy-2-propenoic acid] (8u) and 2-hydroxy-3-(quinoline-2-yl)propenoic acid (8v) with IC50 values of 3.0 ± 1.0 μM and 4.3 ± 1.5 μM respectively. Compound 8v is a competitive inhibitor with respect to pyruvate (Ki = 0.74 μM) and a mixed-type inhibitor with respect to ATP, indicating that it targets the unique carboxyltransferase (CT) domain of PC. Furthermore, compound 8v does not significantly inhibit human carbonic anhydrase II, matrix metalloproteinase-2, malate dehydrogenase or lactate dehydrogenase.  相似文献   

16.
Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (pj) can lead to serious health consequences in patients with an immunocompromised system. Trimethoprim (TMP), used as first-line therapy in combination with sulfamethoxazole, is a selective but only moderately potent pj dihydrofolate reductase (pjDHFR) inhibitor, whereas non-clinical pjDHFR inhibitors, such as, piritrexim and trimetrexate are potent but non-selective pjDHFR inhibitors. To meet the clinical needs for a potent and selective pjDHFR inhibitor for PCP treatment, fourteen 6-substituted pyrido[3,2-d]pyrimidines were developed. Comparison of the amino acid residues in the active site of pjDHFR and human DHFR (hDHFR) revealed prominent amino acid differences which could be exploited to structurally design potent and selective pjDHFR inhibitors. Molecular modeling followed by enzyme assays of the compounds revealed 15 as the best compound of the series with an IC50 of 80 nM and 28-fold selectivity for inhibiting pjDHFR over hDHFR. Compound 15 serves as the lead analog for further structural variations to afford more potent and selective pjDHFR inhibitors.  相似文献   

17.
Cyclization of recently reported linear phosphino dipeptide isostere inhibitors of BACE1 via side chain olefin metathesis yielded macrocyclic BACE1 inhibitors. The most potent compound II-P1 (IC50 of 47 nM) and the corresponding linear analog I were tested for serum stability. The approach led to three times prolonged half life serum stability of 44 min for the macrocyclic inhibitor II-P1 compared to the linear compound I.  相似文献   

18.
A series of 2-phenylaliphatic-substituted androsta-1,4-diene-3,17-diones (6) as well as their androstenedione derivatives (5) were synthesized as aromatase inhibitors to gain insights of structure–activity relationships of varying the alkyl moiety (C1 to C4) of the 2-phenylaliphatic substituents as well as introducing a methyl- or trifluoromethyl function to p-position of a phenethyl moiety to the inhibitory activity. The inhibitors examined showed a competitive type inhibition. The 2-phenpropylandrosta-1,4-diene 6c was the most powerful inhibitor (Ki: 16.1 nM) among them. Compounds 6c along with the phenethyl derivative 6b caused a time-dependent inactivation of aromatase (kinact: 0.0293 and 0.0454 min?1 for 6b and 6c, respectively). The inactivation was prevented by the substrate androstenedione, and no significant effect of l-cysteine on the inactivation was observed in each case. Molecular docking of the phenpropyl compound 6c to aromatase was conducted to demonstrate that the phenpropyl group orients to a hydrophobic binding pocket in the active site to result in the formation of thermodynamically stable enzyme–inhibitor complex.  相似文献   

19.
It is well known that flavanones, sophoraflavanone G 1, kurarinone 2, and kurarinol 3, from the root of Sophora flavescens, have extremely strong tyrosinase inhibitory activity. This study delineates the principal pharmacological features of kurarinol 3 that lead to inhibition of the oxidation of l-tyrosine to melanin by mushroom tyrosinase (IC50 of 100 nM). The inhibition kinetics analyses unveil that compounds 1 and 2 are noncompetitive inhibitors. However similar analysis shows kurarinol 3 to be a competitive inhibitor. Compounds 1 and 2 exhibited potent antibacterial activity with 10 μg/disk against Gram-positive bacteria, whereas kurarinol 3 did not ostend any antibacterial activity. Interestingly, kurarinol 3 inhibits production of melanin in S. bikiniensis without affecting the growth of microorganism. It is thus distinctly different from the other tyrosinase inhibitors 1 and 2. In addition, kurarinol 3 manifests relatively low cytotoxic activity (EC50>30 μM) compared to 1 and 2. To account for these observations, we conducted molecular modeling studies. These suggested that the lavandulyl group within 3 is instrumental in the interaction with the enzyme. More specifically, the terminal hydroxy function within the lavandulyl group is most important for optimal binding.  相似文献   

20.
Bacterial neuraminidase (NA) is one of the key enzymes involved in pathogenesis of inflammation during infection. The organic extract of the roots of Flemingia philippinensis showed high bacterial NA inhibitory activity with an IC50 of around 5 μg/mL. Activity-guided separation of the methanol extract yielded nine prenylated isoflavones together with the novel species isoflavone (2) which was given the name flemingsin. Isolated prenylated isoflavones (19) were evaluated for NA inhibition and their IC50 values were determined to range between 0.30 and 56.8 μM. The most potent inhibitor 4 (IC50 = 300 nM, Ki = 130 nM) features a catechol motif in the B-ring and a furan in the A-ring. Structure–activity analysis also showed a 4-hydroxyl group within the B-ring was essential for NA inhibitory activity, because isoflavone (9) having protected 4-hydroxyl group was much less potent than its hydroxylated counterpart. All neuraminidase compounds screened were found to be reversible noncompetitive inhibitors. Furthermore, the most active NA inhibitors (19) were proven to be present in the native roots in high quantities by HPLC and LC-DAD-ESI/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号