首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A fragment of substance P with specific central activity: SP(1-7)   总被引:2,自引:0,他引:2  
Amino-terminal fragments of substance P (SP), SP(1-7) and SP(1-8), were found to produce naloxone-reversible antinociception in the mouse similar to that produced by SP. Similar to SP, these peptides produce antinociception only within a narrow dose range. They have no activity on smooth muscle or blood pressure. These results suggest that contrary to peripheral effects of SP, which are mediated by receptors which recognize the carboxy-terminal part of the SP molecule, certain central actions of SP are mediated by receptors which recognize the amino-terminal part of the SP molecule. SP may be metabolized to this active fragment prior to its action at these receptors.  相似文献   

3.
We have recently identified a specific binding site for the tachykinin peptide substance P (SP) fragment SP(1-7) in the rat spinal cord. This site appeared very specific for SP(1-7) as the binding affinity of this compound highly exceeded those of other SP fragments. We also observed that endomorphin-2 (EM-2) exhibited high potency in displacing SP(1-7) from this site. In the present work using a [(3)H]-labeled derivative of the heptapeptide we have identified and characterized [(3)H]-SP(1-7) binding in the rat ventral tegmental area (VTA). Similarly to the [(3)H]-SP(1-7) binding in the spinal cord the affinity of unlabeled SP(1-7) to the specific site in VTA was significantly higher than those of other SP fragments. Further, the tachykinin receptor NK-1, NK-2 and NK-3 ligands showed no or negligible binding to the identified site. However, the mu-opioid peptide (MOP) receptor agonists DAMGO, EM-1 and EM-2 did, and significant difference was observed in the binding affinity between the two endomorphins. As recorded from displacement curves the affinity of EM-2 for the SP(1-7) site was 4-5 times weaker than that for SP(1-7) but about 5 times higher than that of EM-1. The opioid receptor antagonists naloxone and naloxonazine showed weak or negligible binding. It was concluded that the specific site identified for SP(1-7) binding in the rat VTA is distinct from the MOP receptor although it exhibits high affinity for EM-2.  相似文献   

4.
The behavioral effects of the amino (N)-terminal fragment of substance P (SP(1-7)) on the marmoset (Callithrix penicillata) predator confrontation test of fear/anxiety were investigated. The test apparatus consisted of a figure-eight maze with three parallel arms interconnected at each extremity to a perpendicular arm. A taxidermized oncilla cat (Felis tigrina) was placed outside the maze facing one of its corners. Subjects were submitted to seven 30 min maze habituation trials (HTs), in the absence of the 'predator', and then to six 30 min treatment trials (TTs), in the presence of the 'predator', consisting of four doses of SP(1-7) (5, 50, 250 and 500 microg/kg; IP), saline and sham injection. SP(1-7) treatment reversed, in a dose-dependent way, the fear-induced avoidance behavior due to the predator's presence and increased the frequency of exploratory behaviors. Locomotor activity decreased during successive HTs, yet increased after all SP(1-7) treatments. These results indicate that systemic administration of SP(1-7) produces anxiolytic-like effects in marmosets tested in the predator confrontation model of fear/anxiety.  相似文献   

5.
The effects of intramuscular (i.m.) injections of nandrolone decanoate (15 mg/kg/day), an anabolic-androgenic steroid, on the levels of substance P (SP) and on its N-terminal fragment SP(1-7) were examined in the male rat brain by radioimmunoassay. The results demonstrated that the SP immunoreactivity in amygdala, hypothalamus, striatum, and periaqueductal gray was significantly enhanced, whereas the concentration of the N-terminal fragment SP(1-7) was enhanced in the nucleus accumbens and in periaqueductal gray. In the striatum the steroid induced a decrease in the content of SP(1-7). The relevance of these peptides in connection with anabolic-androgenic steroid-induced aggression is discussed.  相似文献   

6.
The N-terminal substance P fragment SP1-7 is known to modulate hyperalgesia and opioid withdrawal in animal models. This study examined the effects of intraperitoneal (i.p.) injections of SP1-7 on chronic morphine tolerance and on the levels of dynorphin B (DYN B) and nociceptin/orphanin FQ (N/OFQ) in various brain areas of male Sprague-Dawley rats. Morphine tolerance was induced by subcutaneous injections of the opioid (10 mg/kg) twice daily for 7 days. SP1-7 injected i.p. (185 nmol/kg) 30 min prior to morphine reduced the development of morphine tolerance. Immunoreactive (ir) DYN B and N/OFQ peptide levels were measured in several areas of the central nervous system. Levels of ir DYN B in rats treated with SP1-7 and morphine were decreased in the nucleus accumbens, substantia nigra and ventral tegmental area and increased in the frontal cortex. The ir N/OFQ levels were increased in the periaqueductal gray and decreased in the nucleus accumbens. Since the concentration profiles of the two peptides were altered by SP1-7 in the areas that are implicated in the modulation of opioid tolerance and analgesia, it is suggested that DYN B and N/OFQ systems may be involved in the effects of SP1-7 on opioid tolerance.  相似文献   

7.
Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) represent two opioid active tetrapeptides with high affinity and selectivity for the mu-opioid (MOP) receptor. Both EM-1 and EM-2 exhibit strong inhibition of pain signals in the central nervous system (CNS). In contrast to these compounds, the undecapeptide substance P (SP) facilitates pain influx in the CNS. SP has been implicated in a number of functions in the central nervous system, including pain processing and reward. Its aminoterminal fragment SP1-7 has been shown to modulate several actions of SP in the CNS, the nociceptive effect included. Although the actions of SP1-7 have been known for long no specific receptor for the SP fragment has yet been cloned. In this study, we demonstrate the presence of specific binding sites for the heptapeptide in the rat spinal cord. The binding affinity for unlabeled SP1-7 to the specific sites for the labeled heptapeptide highly exceeded those of SP and other C- or N-terminal fragments thereof. The NK-1, NK-2 and NK-3 receptor ligands [Sar9, Met(O2)11]SP, R396 and senktide, respectively, showed no or negligible binding. Moreover, both EM-1 and EM-2 were found to interact with SP1-7 binding. However, a significant difference in binding affinity between the two opioid active tetrapeptides was observed. As recorded from replacement curves the affinity of EM-2 was 10 times weaker than that for SP1-7 but about 100 times higher than that of EM-1. Among other Tyr-Pro-containing peptides Tyr-MIF-1 but not Tyr-W-MIF-1 exhibited affinity of similar potency as EM-2. These results strengthen the previously observed differences between EM-1 and EM-2 in various functional studies. Moreover, using a cell line (C6) expressing the MOP receptor it was shown that the labeled SP1-7 did not interact with binding to this receptor and no functional response was seen for the SP heptapeptide on the MOP receptor by means of stimulation in the GTPgammaS assay. This suggests that the identified SP1-7 binding sites, with high affinity also for EM-2, are not identical to the MOP receptor and apparently not to any of the known tachykinin receptors.  相似文献   

8.
Withdrawal behavior in morphine-dependent rats precipitated by naloxone was attenuated after pretreatment with the tetrapeptide tuftsin and to some extent by its synthetic derivative [Lys4]-tuftsinyltuftsin. The tetrapeptide fragment (1-4) of Substance P was ineffective in suppressing morphine-withdrawal behavior, whereas its C-amide exerted only weak action. Possible involvement of an immunological mechanism is discussed.  相似文献   

9.
Trifluoperazine dihydrochloride (2.8–4.0 mg/kg/day) was administered continuously to rats in drinking water for six months. Animals killed at this time exhibited an increase in the number of dopamine receptors in the striatum and mesolimbic area, with a corresponding decrease in affinity (increase in the dissociation constant) for 3H-spiperone binding. In frontal cortex, 3H-spiperone binding to 5-HT receptors indicated no apparent change in numbers of receptors, but a slight increase in the dissociation constant. There was no obvious alteration in 3H-apomorphine binding in the striatum and mesolimbic area, but the individual results were very variable. The number and binding affinity of muscarinic receptors in striatum, mesolimbic area and cerebral cortex as identified by 3H-dexetemide were unchanged. Nor was there any alternation in the number or binding affinity of H-1 receptors identified by 3H-mepyramine, or of α-noradrenergic receptors identified by 3H-WB 4101, in cerebral cortex. The number and binding affinity of GABA receptors in the cerebellum identified by 3H-muscimol also was not altered.Chronic neuroleptic administration to rats appears to alter specifically the number of cerebral dopamine receptors.  相似文献   

10.
The paper demonstrates that in spontaneously hypertensive rats (SHR) as compared with normotensive controls exudative processes at the sites of lesions are much more prominent. Such exudative processes include edema, fibrinous exudation as well as permeability of capillaries and venular walls for leukocytes. These effects prolong the phase of its inflammation and retard the regeneration phase in wound healing. Morphine and SP1-11 stimulate in a similar fashion repair during wound healing in the both rat strains. Their effect is similar to the effect of opioid peptides. SP1-4 does not affect vessel reactivity and wound healing in SHR, which is related to disturbed expression of receptors to SP fragments. Synergism in the effect of two functional antagonists i.e. opioids and SP on wound healing confirms our hypothesis about the role of pain as an inducer of a variety of mechanisms underlying repair regeneration.  相似文献   

11.
Peptidase(s) activity of different subcellular fractions isolated from cortex, hippocampus, midbrain, thalamus with hypothalamus, cerebellum and medulla oblongata exerted against less than Glu SP6-11 (3H-Phen8) was evaluated in "low-ionic" and similar (in composition) to both extracellular and intracellular conditions. The incubation of less than Glu SP6-11 with different fractions leaves the hexapeptide undegraded in the studied conditions in most cases. Peptidases activity results in the formation of the first of all C-terminal and exceptionally "internal" labelled products. Labelled N-terminal products were not seen. The most effective degradation in vitro of less than Glu SP6-11 takes place, in the majority of cases, in "low ionic" conditions when compared to those similar to extra or intracellular ones. The biggest total (per 1 g of wet mass) and specific activities against less than Glu SP6-11 can be shown in the hippocampus areas.  相似文献   

12.
Role of endothelin (ETA) receptors in neonatal morphine withdrawal   总被引:1,自引:0,他引:1  
Puppala BL  Bhalla S  Matwyshyn G  Gulati A 《Peptides》2006,27(6):1514-1519
We have previously demonstrated role of central endothelin (ET) receptors in neonatal morphine tolerance. The present study was conducted to investigate involvement of central ET receptors in neonatal rat morphine withdrawal. The aim was to determine activation of G-proteins coupled to opioid and ET receptors by morphine and ET ligands in neonatal rat brains during morphine withdrawal. Pregnant female rats were rendered tolerant to morphine by chronic exposure to morphine pellets over 7 days. Withdrawal was induced on day 8 by removal of pellets. Rat pups were delivered by cesarean section 24 h after pellet removal. G-protein stimulation induced by morphine; ET-1; ETA receptor antagonist, BMS182874; and ETB receptor agonist, IRL1620, was determined in the brain of neonatal rats undergoing morphine withdrawal by [35S]GTPgammaS binding assay. Morphine-induced maximal stimulation of G-protein in morphine withdrawal group (83.60%) was significantly higher compared to placebo control group (66.81%). EC50 value for ET-1-induced G-protein stimulation during morphine withdrawal (170.60 nM) was higher than control (62.5 nM). BMS182874, did not stimulate GTP binding in control but significantly increased maximal stimulation of G-proteins in morphine withdrawal (86.07%, EC50 = 31.25 nM). IRL1620-induced stimulation of G-proteins was similar in control and morphine withdrawal. The present findings indicate involvement of central ETA receptors in neonatal morphine withdrawal.  相似文献   

13.
Wiktelius D  Khalil Z  Nyberg F 《Peptides》2006,27(6):1490-1497
The N-terminal metabolite of the undecapeptide substance P (SP), substance P1-7 (SP1-7), is known to modulate nociception in the central nervous system (CNS) and often has opposite effects from SP. This study investigated the ability of SP(1-7) to modulate the vasodilatation response to SP in anaesthetized rats under different injury conditions using a blister model of inflammation on the hind footpad. The results indicated that SP1-7 inhibited the vascular response to SP in a dose-dependent manner. The putative antagonists naloxone and D-Pro2-D-Phe7-SP1-7 (D-SP1-7) reversed the effect of SP1-7. D-SP1-7 improved the responsiveness to SP under chronic nerve injury, which suggests a role for endogenous SP1-7 in this model. SP1-7 did not inhibit the response to electrical stimulation of the sciatic nerve, which indicates that the heptapeptide interacts at a post-terminal binding site. The current results suggest that SP1-7 may have inhibitory properties in inflammation, analogous to its antinociceptive role in the central nervous system.  相似文献   

14.
15.
16.
Opiate addiction could involve a change in the binding of endogenous antiopiates. A candidate for such a role is Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2), a brain peptide that can antagonize exogenous and endogenous opiates and bind to opiate receptors. Its primary action, however, may be through its own binding site in brain, which we now report is altered by chronic administration of morphine. Rats given morphine pellets had reduced binding of both iodinated and tritiated Tyr-MIF-1 on day 5, when substantial tolerance is evident. In contrast, mu and delta opiate receptors were increased. Acute injection of an analgesic dose of morphine did not reduce Tyr-MIF-1 binding, indicating that chronic administration is required for the change. These findings open new approaches to the study of addiction by focusing on antiopiate activity.  相似文献   

17.
1. The effects of morphine, nalorphine, acetazolamide, and 10% CO2 on brain metabolite concentrations of 24h-starved rats were studied. 2. A single dose of morphine (20mg/kg body wt.) caused an increase in brain glucose concentration (42%) and decreased concentrations of lactate (24%), pyruvate (29%), citrate (20%), α-oxoglutarate (16%), malate (14%) and creatine phosphate (10%) after 30min. No changes were found in adenine nucleotide concentrations. 3. The same dose of morphine increased arterial CO2 from 5.07 to 7.60 kN/m2 (38 to 57 Torr), decreased the pH from 7.41 to 7.31 and decreased O2 from 14.1 to 10.8kN/m2 (106 to 81 Torr) at 30min. 4. Rats injected with morphine three times daily (20mg/kg body wt.) for 2 weeks had no changes in brain metabolite concentrations or in blood gases 30min after their last injection. 5. Nalorphine (an antagonist of morphine) caused essentially no changes in brain metabolite concentrations in normal rats. When nalorphine (20mg/kg) was administered to rats previously treated with morphine three times daily for 2 weeks, there was an increase in brain glucose (100%), lactate (23%), pyruvate (18%) and citrate (10%) concentrations. 6. Acetazolamide (an inhibitor of carbonic anhydrase) and 10% CO2 increased the arterial CO2 from 4.79 to 6.78kN/m2 (36 to 51 Torr) and from 5.32 to 10.8kN/m2 (40 to 81 Torr) respectively. 7. Both acetazolamide and 10% CO2 caused changes in brain metabolite concentrations similar to those for acutely administered morphine. Thus 10% CO2 caused increased brain glucose concentration (123%) and decreased brain lactate (46%), pyruvate (34%), citrate (26%), α-oxoglutarate (33%), malate (45%) and creatine phosphate (7%) concentrations. No changes in adenine nucleotide concentrations were found. 8. The results indicate that the effect of morphine on brain metabolite concentrations may be accounted for by the increased [CO2]. 9. These findings constitute a consistent pattern of metabolic changes after acute morphine administration, morphine addiction, and withdrawal from morphine addiction.  相似文献   

18.
The distributions of substance P (SP) and the neurokinin-1 receptor (NK1-R), the receptor preferentially activated by SP, were examined in rat gingiva by immunocytochemical methods with light and electron microscopy. SP-immunoreactive nerve fibers were located preferentially in the junctional epithelium (JE) but few in the other oral and oral sulcular epithelia. NK1-R immunoreactivity was found in the endothelial cells (capillaries and postcapillary venules underlying the JE). NK1-R-labeled and -unlabeled unmyelinated nerve fibers were located close to the blood vessels and partially or completely covered by a Schwann cell sheath. In the JE, labeled naked axons without Schwann cell sheaths were observed. Neutrophils and macrophages in the connective tissue underlying the JE and in the JE were also labeled with NK1-R. Furthermore, NK1-R was found in the JE cells. Basically, immunoreaction products for NK1-R were found throughout various cells (endothelial cells, neutrophils, and JE cells) at invaginations of the plasma membrane and in vesicular and granular structures that are probably endosomes and are found close to both the plasma membrane and the nucleus. This is a first report, demonstrating the presence of NK1-R in the gingival tissue in the normal nonstimulated condition. Furthermore, it is thought that SP may modulate the permeability of blood vessels beneath the JE, the production of antimicrobial agents in neutrophils, and the proliferation and endocytotic ability of JE cells through NK1-R.  相似文献   

19.
20.
Explants of the ganglion trigeminale (PNS) and of the telencephalon (CNS) from chick embryos were cultivated in MAXIMOW chambers in semisynthetic media in the presence of dipeptide fragments (Lys(Z)-Pro . HCl, Lys-Pro-2HBr, Arg-Pro-2HCl) and the heptapeptide (SP5-11) of substance P as well as the complete substance P (SP1-11). 1. Histological examination of the dipeptide-treated CNS explants indicates that the structure of outgrowth in vitro is changed. Fascicel were observed. A stimulation of nerve fibre extension did not take place. 2.1. In dipeptide-treated PNS cultures the index of areas covered by the explants increased. 2.2. The index of nerve fibre growth increased significantly. The stimulation was caused in multiplication of fibres. Only Lys(Z)-Pro . HCl presents a prolongation of neurites. 2.3. SP5-11 effects in no case the growth of nerve fibres. SP1-11 stimulated significantly the fibre regeneration. 3. The possible role of SP1-11 with different effects under in vitro conditions is discussed. Only the N-terminal dipeptides stimulate the growth of nerve fibres. The C-terminal SP5-11 is without effect. Finally it is stated that the best results in neuritic enlargement and neurogenesis can only be obtained by cultivation with SP1-11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号