首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The globular domain in the NH(2)-terminal propeptide (N-propeptide) of the proalpha1(I) chain is largely encoded by exon 2 of the Col1a1 gene and has been implicated in a number of processes that are involved in the biogenesis, maturation, and function of type I collagen. These include intracellular chain association, transcellular transport and secretion, proteolytic processing of the precursor, feedback regulation of synthesis, and control of fibrillogenesis. However, none of these proposed functions has been firmly established. To evaluate the function of this procollagen domain we have used a targeted mutagenesis approach to generate mice that lack exon 2 in the Col1a1 gene. Mouse lines were established on both a mixed 129 OlaHsd/Sv and C57BL/6 background and a pure 129 OlaHsd/Sv background. Adult mice on the mixed background are normal in appearance and are fertile. To the extent that they have been studied, procollagen synthesis, secretion, and proteolytic processing are normal in these mice, and collagen fibrillogenesis is only slightly altered. However, breeding of heterozygous mutant mice on the 129 background generated homozygous mutants at only 64% of the expected frequency. These findings suggest that although the N-propeptide is not essential for collagen biogenesis in mice it may play some essential role during embryonic development.  相似文献   

2.
Fu SC  Wong YP  Chan BP  Pau HM  Cheuk YC  Lee KM  Chan KM 《Life sciences》2003,72(26):2965-2974
Recombinant human (rh) bone morphogenetic protein 12 (BMP12) is proved to induce the formation of tendon and ligament tissues in animal experiments. But the roles of BMP12 on tissue regeneration in human tendons remain unexplored. In the present study, healthy human patellar tendon samples were collected for histological examination and preparation of tendon fibroblast culture. Immunohistochemical staining showed that BMP12 was detected on healthy patellar tendon samples, only located on active tenoblasts and perivascular mesenchymal cells but not in interstitial tenocytes. The expression of PCNA and procollagen type I also exhibited a similar distribution. It indicates that BMP12 may be involved in matrix remodeling process in adult tissues. In vitro studies showed that rhBMP12 could increase proliferation of tendon fibroblasts and increase the gene expression of procollagen type I and type III, but decrease the gene expression of decorin in tendon fibroblasts culture. Our findings suggest that BMP12 may play a role in early phases of tissue regeneration in tendons.  相似文献   

3.
The cause of the Ehlers-Danlos syndrome Type VII (EDS VII) is considered to be defective removal of the amino-terminal propeptide (N-propeptide) of Type I procollagen due to deficiency of procollagen N-proteinase, the enzyme responsible for the normal proteolytic excision of this precursor-specific domain. Molecules retaining the N-propeptide (pN-collagen molecules) are thought to cause defective fibrillogenesis and cross-linking which eventuate in dramatic joint laxity and joint dislocations, the clinical hallmark of this variety of EDS. Recent studies demonstrate that some EDS VII patients harbor small deletions of either the pro-alpha 1(I) or pro-alpha 2(I) chain of Type I procollagen. We have found an 18-amino acid deletion (due to exon outsplicing) in a mutant pro-alpha 2(I) chain from such a patient. The deleted peptide is the junctional segment (N-telopeptide) linking the alpha 2(I) N-propeptide and major triple helical domains; loss of this short segment results in union of these latter domains and produces a shortened pN alpha 2(I) chain. Directly extracted tissue collagen and pepsin-digested fibroblast collagen contain this mutant pN alpha 2(I) chain and normal alpha 1(I) chains, but not pN alpha 1(I) chains, indicating that the relatively larger alpha 1(I) N-propeptide is excised from the related alpha 1(I) chains. The fate of this alpha 1(I) N-propeptide was unclear and therefore whether or not the intact N-propeptide was, in fact, retained in native mutant collagen was also unclear. In this paper, we describe morphologic, chemical, and immunochemical studies which indicate that the alpha 1(I) N-propeptide is retained in noncovalent association with the mutant pN alpha 2(I) chain in native mutant collagen molecules both in vivo and in vitro. In both instances, the alpha 1(I) N-propeptides are proteolytically cleaved from the related alpha 1(I) chains. These data suggest that retention of a partially cleaved, but essentially intact N-propeptide in mutant collagen may play a role in the pathogenesis of this disease.  相似文献   

4.
The impetus for this review comes from the recent finding that the absence of the majority of the non-triple-helical sequence in the NH(2)-terminal propeptide (N-propeptide) of the pro alpha 1(I) collagen chain fails to generate a significant phenotype in the mouse (Bornstein et al., J. Biol. Chem., 277:2605-2613, 2002). This result is in apparent conflict with those of numerous studies in vitro that have implicated the N-propeptide in a number of processes that are involved in the biogenesis, maturation and function of type 1 collagen. To seek an explanation for this discrepancy, the sequences of the highly conserved, 55-57-amino acid, cysteine-rich repeats (CRR), which constitute the majority of the globular domains in the N-propeptides, were compared among 13 vertebrate species. Surprisingly, the CRR in mice and rats differs substantially from those in other mammalian species. Indeed, the CRR in birds, fish and amphibia are more similar to those of other mammals than are the CRR in rodents. This finding raises the possibility that the mutant mouse, which lacks exon 2 that encodes the CRR in the N-propeptide, might not be an appropriate model in which to study the function of the N-propeptide in other mammals. Alternatively, compensation, possibly by procollagens II or III, could account for the mild phenotype of the exon 2-deleted mouse. Yet another possibility is that the CRR plays a developmental role in the mouse, akin to that recently proposed for the N-propeptide in type IIA procollagen, rather than a function in collagen biogenesis. Some support for the latter possibility is provided by the observation that, on one background, the breeding of heterozygous exon 2-deleted mice generated homozygous mutants at less than the expected frequency. Experiments to examine these possibilities are proposed.  相似文献   

5.
The sequence encoding the N-propeptide of collagen I is characterized by significant conservation of amino acids across species; however, the function of the N-propeptide remains poorly defined. Studies in vitro have suggested that one activity of this propeptide might be to act as a feedback inhibitor of collagen I synthesis. To determine whether the N-propeptide contributed to decreased collagen content in SPARC-null mice, mice carrying a deletion of exon 2, which encodes the globular domain of the N-propeptide of collagen I, were crossed to SPARC-null animals. Mice lacking SPARC and expressing collagen I without the globular domain of the N-propeptide were viable and fertile. However, a significant number of animals developed abdominal hernias within the first 2 months of life with an approximate 20% penetrance (~ 35% of males). The dermis of SPARC-null/exon 2-deleted mice was thinner and contained fewer large collagen fibers in comparison with wild-type or in either single transgenic animal. The average collagen fibril diameter of exon 2-deleted mice did not significantly differ from wild-type mice (WT: 87.9 nm versus exon 2-deleted: 88.2 nm), whereas SPARC-null/exon 2-deleted fibrils were smaller than that of SPARC-null dermis (SPARC-null: 60.2 nm, SPARC-null/exon 2-deleted: 40.8 nm). As measured by hydroxyproline analysis, double transgenic skin biopsies contained significantly less collagen than those of wild-type, those of exon 2-deleted, and those of SPARC-null biopsies. Acetic acid extraction of collagen from skin biopsies revealed an increase in the proportion of soluble collagen in the SPARC-null/exon 2-deleted mice. These results support a function of the N-propeptide of collagen I in facilitating incorporation and stabilization of collagen I into the insoluble ECM and argue against a primary function of the N-propeptide as a negative regulator of collagen synthesis.  相似文献   

6.
The amino and carboxyl propeptides of procollagens I and II are removed by specific enzymes as a prerequisite for fibril assembly. Null mutations in procollagen I N-propeptidase (ADAMTS-2) cause dermatosparaxis in cattle and the Ehlers-Danlos syndrome (dermatosparactic type) in humans by preventing proteolytic excision of the N-propeptide of procollagen I. We have found that procollagen II is processed normally in dermatosparactic nasal cartilage, suggesting the existence of another N-propeptidase(s). We investigated such a role for ADAMTS-3 in Swarm rat chondrosarcoma RCS-LTC cells, which fail to process the procollagen II N-propeptide. Stable transfection of RCS-LTC cells with bovine ADAMTS-2 or human ADAMTS-3 partially rescued the processing defect, suggesting that ADAMTS-3 has procollagen II N-propeptidase activity. Human skin and skin fibroblasts showed 30-fold higher mRNA levels of ADAMTS-2 than ADAMTS-3, whereas ADAMTS-3 mRNA was 5-fold higher than ADAMTS-2 mRNA in human cartilage. We propose that both ADAMTS-2 and ADAMTS-3 process procollagen II, but ADAMTS-3 is physiologically more relevant, given its preferred expression in cartilage. The findings provide an explanation for the sparing of cartilage in dermatosparaxis and, perhaps, for the relative sparing of some procollagen I-containing tissues.  相似文献   

7.
We have analyzed the distribution of type II collagen N- and C-propeptides in the cell layers and culture medium of bovine articular chondrocyte pellet cultures. Two splice variants of the type II collagen N-propeptide were detected by immunoblotting and immunoassay, using a new anti-peptide antibody, while the C-propeptide was detected using a monoclonal antibody. Type II collagen molecules containing the N-propeptide were detected weakly in cell layers, but not in tissue culture medium of chondrocyte pellet cultures, and both splice variants were observed. Free N-propeptide could not be detected in cell layers or medium. Type II procollagen molecules containing the C-propeptide were detected strongly in cell layers, but not in tissue culture medium, while the free C-propeptide was detected in both cell layers and medium. Since the N- and C-propeptides must be synthesized in a 1:1 molar ratio, we conclude that the N-propeptide is metabolized more quickly than the C-propeptide in this system. Our model can be used to study regulation of procollagen synthesis and propeptidase activity.  相似文献   

8.
The dermal type I collagen of a patient with Ehlers-Danlos type VIIB (EDS-VIIB) contained normal alpha 2(I) chains and mutant pN-alpha 2(I)' chains in which the amino-terminal propeptide (N-propeptide) remained attached to the alpha 2(I) chain. Similar alpha 2(I) chains were produced by cultured dermal fibroblasts. Amino acid sequencing of tryptic peptides, prepared from the mutant amino-terminal pN-alpha 2(I) CB1' peptide, indicated that five amino acids, including the N-proteinase (the specific proteinase that cleaves the procollagen N-propeptide) cleavage site, had been deleted from the junction of the N-propeptide and the N-telopeptide (the nonhelical domain at the amino-terminus of the alpha chains of fully processed type I polypeptide chains) of the mutant pro-alpha 2(I)' chain. The corresponding 15 nucleotides, which were deleted from approximately half of the alpha 2(I) cDNA polymerase chain reaction products, of the alpha 2(I) cDNA polymerase chain reaction products, were encoded by the +1 to +15 nucleotides of exon 6 of the normal alpha 2(I) gene (COL1A2). These 15 nucleotides were deleted in the splicing of alpha 2(I) pre-mRNA to mRNA as a result of inactivation of the 3' splice site of intron 5 by an AG to AC mutation and the activation of a cryptic AG splice acceptor site corresponding to positions +14 and +15 of exon 6. Loss of the N-proteinase cleavage site explained the persistence of the pN-alpha 2(I)' chains in the dermis and in fibroblast cultures. Collagen production by cultured dermal fibroblasts was doubled, possibly due to reduced feedback inhibition by the N-propeptides. In contrast to previously reported cases of EDS-VIIB, Lys5 of the N-telopeptide was not deleted and appeared to take part in the formation of intramolecular cross-linkages. However, increased collagen solubility and abnormal extraction profiles of the mutant type I collagen molecules indicated that collagen cross-linking was abnormal in the dermis. The proband and her son were heterozygous for the mutation. It is likely that the heterozygous loss of the N-proteinase cleavage site, with persistence of a shortened N-propeptide, was the major factor responsible for the EDS-VIIB phenotype.  相似文献   

9.
10.
11.
12.
In eukaryotic cells, CLS (cardiolipin synthase) is involved in the final step of cardiolipin synthesis by catalysing the transfer of a phosphatidyl residue from CDP-DAG (diacylglycerol) to PG (phosphatidylglycerol). Despite an important role of cardiolipin in regulating mitochondrial function, a gene encoding the mammalian CLS has not been identified so far. We report in the present study the identification and characterization of a human cDNA encoding the first mammalian CLS [hCLS1 (human CLS1)]. The predicted hCLS1 peptide sequence shares significant homology with the yeast and plant CLS proteins. The recombinant hCLS1 enzyme expressed in COS-7 cells catalysed efficiently the synthesis of cardiolipin in vitro using CDP-DAG and PG as substrates. Furthermore, overexpression of hCLS1 cDNA in COS-7 cells resulted in a significant increase in cardiolipin synthesis in intact COS-7 cells without any significant effects on the activity of the endogenous phosphatidylglycerophosphate synthase of the transfected COS-7 cells. Immunohistochemical analysis demonstrated that the recombinant hCLS1 protein was localized to the mitochondria when transiently expressed in COS-7 cells, which was further corroborated by results from subcellular fractionation analyses of the recombinant hCLS1 protein. Northern-blot analysis showed that the hCLS1 gene was predominantly expressed in tissues that require high levels of mitochondrial activities for energy metabolism, with the highest expression in skeletal and cardiac muscles. High levels of hCLS1 expression were also detected in liver, pancreas, kidney and small intestine, implying a functional role of hCLS1 in these tissues.  相似文献   

13.
14.
The protease that cleaves the most abundant non-collagenous protein of dentin matrix, dentin sialophosphoprotein (DSPP), into its two final dentin matrix products, dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), has not been directly identified. In this study, full-length recombinant mouse DSPP was made for the first time in furin-deficient mammalian LoVo cells and used to test the ability of three different isoforms of one candidate protease, bone morphogenetic protein-1 (BMP1) to cleave DSPP at the appropriate site. Furthermore, two reported enhancers of BMP1/mTLD activity (procollagen C-endopeptidase enhancer-1, PCPE-1, and secreted frizzled-related protein-2, sFRP2) were tested for their abilities to modulate BMP1-mediated processing of both DSPP and another SIBLING family member with a similar cleavage motif, dentin matrix protein-1 (DMP1). Three splice variants of BMP1 (classic BMP1, the full-length mTolloid (mTLD), and the shorter isoform lacking the CUB3 domain, BMP1-5) were all shown to cleave the recombinant DSPP in vitro although mTLD was relatively inefficient at processing both DSPP and DMP1. Mutation of the MQGDD peptide motif to IEGDD completely eliminated the ability of all three recombinant isoforms to process full-length recombinant DSPP in vitro thereby verifying the single predicted cleavage site. Furthermore when human bone marrow stromal cells (which naturally express furin-activated BMP1) were transduced with the adenovirus-encoding either wild-type or mutant DSPP, they were observed to fully cleave wild-type DSPP but failed to process the mutant DSPPMQΔIE during biogenesis. All three BMP1 isoforms were shown to process type I procollagen as well as DSPP and DMP1 much more efficiently in low-salt buffer (≤ 50 mM NaCl) compared to commonly used normal saline buffers (150 mM NaCl). Neither PCPE-1 nor sFRP2 were able to enhance any of the three BMP1 isoforms in cleaving either DSPP or DMP1 under either low or normal saline conditions. Interestingly, we were unable to reproduce sFRP2's reported ability to enhance the processing of type I procollagen by BMP1/mTLD. In summary, three isoforms of BMP1 process both DSPP and DMP1 at the MQX/DDP motif, but the identity of a protein that can enhance the cleavage of the two SIBLING proteins remains elusive.  相似文献   

15.
16.
Activins and bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta family of growth and differentiation factors that induce signaling in target cells by assembling type II and type I receptors at the cell surface. Ligand residues involved in type II binding are located predominantly in the C-terminal region that forms an extended beta-sheet, whereas residues involved in type I binding are located in the alpha-helical and preceding loop central portion of the molecule. To test whether the central residues are sufficient to determine specificity toward type I receptors, activin A/BMP chimeras were constructed in which the central residues (45-79) of activin A were replaced with corresponding residues of BMP2 and BMP7. The chimeras were assessed for activin type II receptor (Act RII) binding, activin-like bioactivity, and BMP-like activity as well as antagonistic properties toward activin A and myostatin. ActA/BMP7 chimera retained Act RII binding affinity comparable with wild type activin A, whereas ActA/BMP2 chimera showed a slightly reduced affinity toward Act RII. Both the chimeras were devoid of significant activin bioactivity in 293T cells in the A3 Lux reporter assay up to concentrations 10-fold higher than the minimal effective activin A concentration (approximately 4 nM). In contrast, these chimeras showed BMP-like activity in a BRE-Luc assay in HepG2 cells as well as induced osteoblast-like phenotype in C2C12 cells expressing alkaline phosphatase. Furthermore, both the chimeras activated Smad1 but not Smad2 in C2C12 cells. Also, both the chimeras antagonized ligands that signal via activin type II receptor, such as activin A and myostatin. These data indicate that activin residues in the central region determine its specificity toward type I receptors. ActA/BMP chimeras can be useful in the study of receptor specificities and modulation of transforming growth factor-beta members, activins, and BMPs.  相似文献   

17.
Signaling pathways for bone morphogenetic proteins (BMPs) are important in osteoblast differentiation. Although the precise function of type I BMP receptors in mediating BMP signaling for osteoblast differentiation and bone formation has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified. In this study, we investigated the role of type II BMP receptor (BMPR-II) and type IIB activin receptor (ActR-IIB) in BMP2-induced osteoblast differentiation. While osteoblastic 2T3 cells expressed BMPR-II and ActR-IIB, loss-of-function studies, using dominant negative receptors and siRNAs, showed that BMPR-II and ActR-IIB compensated each other functionally in mediating BMP2 signaling and BMP2-induced osteoblast differentiation. This was evidenced by two findings. First, unless there was loss of function of both type II receptors, isolated disruption of either BMPR-II or ActR-IIB did not remove BMP2 activity. Second, in cells with loss of function of both receptors, restoration of function of either BMPR-II or ActR-IIB by transfection of the wild-type forms, restored BMP2 activity. These findings suggest a functional redundancy between BMPR-II and ActR-IIB in osteoblast differentiation. Results from experiments to test the effects of transforming growth factor β (TGF-β), activin, and fibroblast growth factor (FGF) on osteoblast proliferation and differentiation suggest that inhibition of receptor signaling by double-blockage of BMPR-II and ActR-IIB is BMP-signaling specific. The observed functional redundancy of type II BMP receptors in osteoblasts is novel information about the BMP signaling pathway essential for initiating osteoblast differentiation.  相似文献   

18.
The organization of the exons coding for the N-terminal portion of human type II procollagen has been determined. Aside from inferring the previously unknown primary structure of type II N-propeptide, this study has revealed that this coding domain of the gene exhibits an organization uniquely distinct from those of type I and type III collagens. This finding substantiates the notion that the N-propeptide coding domains of the fibrillar collagen genes evolved under less stringent selection than those encoding the C-propeptide and triple helical regions.  相似文献   

19.
Type II procollagen is expressed as two splice forms. One form, type IIB, is synthesized by chondrocytes and is the major extracellular matrix component of cartilage. The other form, type IIA, contains an additional 69 amino acid cysteine-rich domain in the NH2-propeptide and is synthesized by chondrogenic mesenchyme and perichondrium. We have hypothesized that the additional protein domain of type IIA procollagen plays a role in chondrogenesis. The present study was designed to determine the localization of the type IIA NH2-propeptide and its function during chondrogenesis. Immunofluorescence histochemistry using antibodies to three domains of the type IIA procollagen molecule was used to localize the NH2-propeptide, fibrillar domain, and COOH-propeptides of the type IIA procollagen molecule during chondrogenesis in a developing human long bone (stage XXI). Before chondrogenesis, type IIA procollagen was synthesized by chondroprogenitor cells and deposited in the extracellular matrix. Immunoelectron microscopy revealed type IIA procollagen fibrils labeled with antibodies to NH2-propeptide at approximately 70 nm interval suggesting that the NH2-propeptide remains attached to the collagen molecule in the extracellular matrix. As differentiation proceeds, the cells switch synthesis from type IIA to IIB procollagen, and the newly synthesized type IIB collagen displaces the type IIA procollagen into the interterritorial matrix. To initiate studies on the function of type IIA procollagen, binding was tested between recombinant NH2-propeptide and various growth factors known to be involved in chondrogenesis. A solid phase binding assay showed no reaction with bFGF or IGF-1, however, binding was observed with TGF-beta1 and BMP-2, both known to induce endochondral bone formation. BMP-2, but not IGF-1, coimmunoprecipitated with type IIA NH2-propeptide. Recombinant type IIA NH2-propeptide and type IIA procollagen from media coimmunoprecipitated with BMP-2 while recombinant type IIB NH2-propeptide and all other forms of type II procollagens and mature collagen did not react with BMP-2. Taken together, these results suggest that the NH2-propeptide of type IIA procollagen could function in the extracellular matrix distribution of bone morphogenetic proteins in chondrogenic tissue.  相似文献   

20.
A rapid assay procedure was developed for cleavage of the N-terminal propeptides of procollagen. With the assay a neutral procollagen N-protease was purified about 300-fold from chick embryo tendon extract. The enzyme had an apparent molecular weight of 260 000 and a pH optimum of 7.4. Ca2+ was required for enzymic activity but this requirement was partially replaced by Mg2+ or Mn2+. The enzyme was bound to concanavalin A-agarose and therefore was presumably a glycoprotein. The N-propeptides released from type I procollagen were of about 23 000 and 11 000 daltons as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The partially purified enzyme was also found to cleave type II procollagen and the N-propeptide obtained was about 18 000 daltons. Heat denaturation of either type I or type II procollagen decreased the rate at which the proteins were cleaved by the N-protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号