首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hafizi S  Chester AH  Yacoub MH 《Peptides》2004,25(6):1031-1033
The vasoactive peptide angiotensin II (Ang II) has been implicated as a mediator of myocardial fibrosis. We carried out a comparative investigation of the effects of Ang II and its precursor Ang I on collagen metabolism and proliferation in cultured human cardiac fibroblasts. Cardiac fibroblasts responded to both Ang I and Ang II with concentration-dependent increases in collagen synthesis but no proliferation. The stimulatory effect of Ang II was abolished by the AT(1) receptor antagonist losartan but not the AT(2) receptor antagonist PD123319. The response to Ang I was not affected by either antagonist, nor by the angiotensin-converting enzyme (ACE) inhibitor captopril. In conclusion, Both Ang I and Ang II stimulate collagen synthesis of human cardiac fibroblasts, the effect of Ang II occurring via the AT(1) receptor whilst Ang I appears to exert a direct effect through non-Ang II-dependent mechanisms. These results suggest distinct roles for angiotensin peptides in the development of cardiac fibrosis.  相似文献   

2.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

3.
Abnormal growth of cardiac fibroblasts is critically involved in the pathophysiology of cardiac hypertrophy/remodeling. Hexarelin is a synthetic growth hormone secretagogue (GHS), which possesses a variety of cardiovascular protective activities mediated via the GHS receptor (GHSR), including improving cardiac dysfunction and remodeling. The cellular and molecular mechanisms underlying the effect of GHS on cardiac fibrosis are, however, not clear. In this report, cultured cardiac fibroblasts from 8-day-old rats were stimulated with ANG II or FCS to induce proliferation. The fibroblast proliferation and DNA and collagen synthesis were evaluated utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (3)H-thymidine incorporation, and (3)H-proline incorporation. The level of mRNA of transforming growth factor (TGF)-beta was evaluated by RT-PCR, and the active TGF-beta1 release from cardiac fibroblasts was evaluated by ELISA. The level of cellular cAMP was measured by radioimmunoassay. In addition, the effects of 3,7-dimethyl-l-propargylxanthine (DMPX; a specific adenosine receptor A(2)R antagonist) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a specific A(1)R antagonist) were tested. It was found that incubation with 10(-7) mol/l hexarelin for 24 h 1) inhibited the ANG II-induced proliferation and collagen synthesis and the 5% FCS- and TGF-beta-induced increase of DNA synthesis in cardiac fibroblast and 2) reduced ANG II-induced upregulation of TGF-beta mRNA expression and active TGF-beta1 release from fibroblasts. Hexarelin increased the cellular level of cAMP in cardiac fibroblasts. DMPX (10(-8) mol/l) but not DPCPX abolished the effect of hexarelin on cardiac fibroblast DNA synthesis. It is concluded that hexarelin inhibits DNA and collagen synthesis and proliferation of cardiac fibroblasts through activation of both GHSR and A(2)R and diminishment of ANG II-induced increase in TGF-beta expression and release.  相似文献   

4.
5.
Currently, strategies aimed at disrupting renin–angiotensin–aldosterone system (RAAS) are extensively investigated for treating liver fibrosis. However, the experiment results remain unsatisfactory, mainly due to excessive level of angiotensin II (AngII) in gene expression. In this article, we aim to investigate whether suppression of AngII-type I receptor (ATIR) expression by short hairpin RNA (shRNA) expression vectors decreases the level of collagen synthesis in hepatic stellate cells (HSCs). Three pairs of ATIR-targeted shRNA expression vectors were transfected into HSC-T6 cells. Compared with the control group, both mRNA and protein levels of ATIR expression were significiently decreased in shRNA-treated groups, and the inhibitory effect exhibited a dose- and time-dependent pattern. Accordingly, TGF-β1 mRNA expression in shRNA1 group was reduced by about 54% compared with the control group. The level of Procollagen type III, hyaluronic acid, and laminin declined by about 46.4, 52.6, and 42%, respectively. In conclusion, shRNA expression vectors targeting ATIR could attenuate collagen synthesis.  相似文献   

6.
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.  相似文献   

7.
AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF‐β (transforming growth factor‐β). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF‐β actions. Here, we studied the effect of AII on the mRNA levels of TGF‐β isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF‐β1, TGF‐β2 and TGF‐β3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF‐β isoforms, particularly TGF‐β2 and TGF‐β3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF‐β protein after AII treatment. The mRNA expression of TGF‐β isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF‐β expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.  相似文献   

8.
Liver fibrosis occurs as a consequence of the transdifferentiationof hepatic stellate cells into myofibroblasts and is associated with an increased expression and activation of transforming growth factor (TGF)-beta1. This pluripotent, profibrogenic cytokine stimulates matrix synthesis and decreases matrix degradation, resulting in fibrosis. Thus, blockade of synthesis or sequestering of mature TGF-beta1 is a primary target for the development of antifibrotic approaches. The purpose of this study was to investigate whether the administration of adenoviruses constitutively expressing an antisense mRNA complementary to the 3' coding sequence of TGF-beta1 is able to suppress the synthesis of TGF-beta1 in culture-activated hepatic stellate cells. We demonstrate that the adenoviral vehicle directs high-level expression of the transgene and proved that the transduced antisense is biologically active by immunoprecipitation, Western blot, quantitative TGF-beta1 ELISA, and cell proliferation assays. Additionally, the biological function of the transgene was confirmed by analysis of differential activity of TGF-beta1-responsive genes using cell ELISA, Northern blotting, and by microarray technology, respectively. Furthermore, we examined the effects of that transgene on the expression of TGF-beta2, TGF-beta3, collagen type alpha1(I), latent transforming growth factor binding protein 1, types I and II TGF-beta receptors, and alpha-smooth muscle actin. Our results indicate that the administration of antisense mRNA offers a feasible approach to block autocrine TGF-beta1 signaling in hepatic stellate cells and may be useful and applicable in future to the treatment of fibrosis in chronic liver diseases.  相似文献   

9.
Angiotensin II has progressively been considered to play an important role in the development of liver fibrosis, although the mechanism isn''t fully understood. The aim of this study was to investigate a possible pro-fibrotic mechanism, by which angiotensin II would enhance the pro-fibrotic effect of transforming growth factor beta 1 (TGF-β1) through up-regulation of toll-like receptor 4 (TLR4) and enhancing down-regulation of TGF-β1 inhibitory pseudo-receptor—BAMBI caused by LPS in hepatic stellate cells (HSCs). Firstly, the synergistic effects of angiotensin II, TGF-β1 and LPS on collagen 1α production were confirmed in vitro by ELISA, in which angiotensin II, LPS and TGF-β1 were treated sequentially, and in vivo by immunofluorescence, in the experiments single or multiple intra-peritoneally implanted osmotic mini-pumps administrating angiotensin II or LPS combined with intra-peritoneal injections of TGF-β1 were used. We also found that only LPS and TGF-β1 weren''t enough to induce obvious fibrogenesis without angiotensin II. Secondly, to identify the reason of why angiotensin II is so important, the minute level of TLR4 in activated HSCs - T6 and primary quiescent HSCs of rat, up-regulation of TLR4 by angiotensin II and blockage by different angiotensin II receptor type 1 (AT1) blockers in HSCs were assayed by western blotting in vitro and immunofluorescence in vivo. Finally, BAMBI expression level, which is regulated by LPS-TLR4 pathway, was detected by qRT-PCR and results showed angiotensin II enhanced the down-regulation of BAMBI mRNA caused by LPS in vitro and in vivo, and TLR4 neutralization antibody blocked this interactive effect. These data demonstrated that angiotensin II enhances LPS-TLR4 pathway signaling and further down-regulates expression of BAMBI through up-regulation of TLR4, which results in facilitation of pro-fibrotic activity of TGF-β1. Angiotensin II, LPS and TGF-β1 act synergistically during hepatic fibrogenesis, showing crosstalks between angiotensin II-AT1, LPS-TLR4 and TGF-β1-BAMBI signal pathways in rat HSCs.  相似文献   

10.
The cytochrome P-450 arachidonic acid metabolite 20-HETE is central to the regulation of vascular tone, renal function, and blood pressure and is synthesized in the rat kidney in response to angiotensin II (ANG II) and endothelin-1 (ET-1). There are very few studies examining the cellular synthesis of 20-HETE in humans. We aimed to measure human neutrophil and platelet 20-HETE levels under basal conditions and after ANG II, ET-1, and calcium ionophore (CaI). 20-HETE was measured in human platelets and neutrophils after saline (control), CaI (2.5 μg/ml), and ANG II or ET-1 (10 nmol/l-1 μmol/l) incubations. The effect of cells, which were preincubated with the ω-hydroxylase inhibitor N-hydroxy-N'-(4-butyl-2-methylphenyl) (HET0016, 10 nM), ANG II types 1 or 2 (AT(1) or AT(2)) receptor inhibition with irbesartan (1 μmol/l) or PD-123319 (1 μmol/l), or endothelin receptor subtypes A or B (ET(A) or ET(B)) receptor inhibition with BQ-123 or BQ-778 (100 nmol/l), was studied. Neutrophil and platelet content and release of 20-HETE was significantly increased by CaI and blocked by the ω-hydroxylase inhibitor HET0016. ANG II and ET-1 significantly increased neutrophil and platelet content and release of 20-HETE. ANG II increased 20-HETE via the AT(2) receptor. ET-1 increased 20-HETE through the ET(B) receptor in platelets and both the ET(A) and ET(B) receptors in neutrophils. These studies show that human platelets and neutrophils synthesize 20-HETE in response to ANG II and ET-1. 20-HETE synthesis in both cell types was predominantly mediated via the AT(2) and ET(B) receptors. Stimulation via these receptor pathways has generally been thought to be cardioprotective and requires further studies in clinical situations associated with low-grade inflammation or where ANG II and ET-1 are elevated to clarify the role of 20-HETE.  相似文献   

11.
Although angiotensin II (Ang II) is known to participate in pancreatic fibrosis, little is known as to the mechanism by which Ang II promotes pancreatic fibrosis. To elucidate the mechanism, we examined the action of Ang II on the proliferation of rat pancreatic stellate cells (PSCs) that play central roles in pancreatic fibrosis. Immunocytochemistry and Western blotting demonstrated that both Ang II type 1 and type 2 receptors were expressed in PSCs. [3H]Thymidine incorporation assay revealed that Ang II enhanced DNA synthesis in PSCs, which was blocked by Ang II type 1 receptor antagonist losartan. Western blotting using anti-phospho-epidermal growth factor (EGF) receptor and anti-phospho-extracellular signal regulated kinase (ERK) antibodies showed that Ang II-activated EGF receptor and ERK. Both EGF receptor kinase inhibitor AG1478 and MEK1 inhibitor PD98059 attenuated ERK activation and DNA synthesis enhanced by Ang II. These results indicate that Ang II stimulates PSC proliferation through EGF receptor transactivation-ERK activation pathway.  相似文献   

12.
A rat vascular AT1 receptor cDNA has been stably expressed into Chinese Hamster Ovary cells and the resulting recombinant AT1a receptor has been functionally characterized. This receptor binds 125I Sar1-angiotensin II with an affinity of 0.9 nM and the displacement of this ligand by a series of peptidic and nonpeptidic analogs is shown. Binding of angiotensin II to this receptor causes a rapid increase in inositol phosphate production, whereas this effect is not observed in nontransfected cells. Des-aspartyl1 angiotensin II and at a lesser extent angiotensin I are also able to produce an increase in inositol phosphates. More importantly, the actions of angiotensin II on cell division were clearly demonstrated in this model, since angiotensin II is able to stimulate DNA synthesis by 400% and double the cell population of the transfected cells in 36 hours in the absence of any other growth factor, whereas no effect is observed in nontransfected cells.  相似文献   

13.
F2-isoprostanes are not just markers of oxidative stress   总被引:1,自引:0,他引:1  
F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature. In addition to the F(2)-IsoPs, E(2)- and D(2)-IsoPs can be formed by rearrangement of H(2)-IsoP endoperoxides and can give rise to cyclopentenone IsoPs, which are very reactive alpha,beta-unsaturated aldehydes. The same type of reactivity is also shown by acyclic gamma-ketoaldehydes formed as products of the IsoP pathway. Because previous studies suggested a relation between oxidative stress and collagen hyperproduction, it was investigated whether collagen synthesis is induced by F(2)-IsoPs, the most proximal products of lipid peroxidation. In contrast to aldehydes, F(2)-IsoPs act through receptors able to elicit definite signal transduction pathways. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma F(2)-IsoPs were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of smooth muscle alpha-actin) and then treated with F(2)-IsoPs in the concentration range found in the in vivo studies (10(-9) to 10(-8) M), a striking increase in DNA synthesis, cell proliferation, and collagen synthesis was observed. Total collagen content was similarly increased. All these stimulatory effects were reversed by the specific antagonist of the thromboxane A(2) receptor, SQ 29 548, whereas the receptor agonist, I-BOP, also had a stimulatory effect. Therefore F(2)-IsoPs generated by lipid peroxidation in hepatocytes may mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

14.
Fibroblast growth factor 2 (FGF-2) and its main receptor FGFR1 have been shown to promote hepatic stellate cell (HSC) activation and proliferation. However, scant information is available on the anti-fibrogenic activity of FGFR1 inhibitors. The aim of this study was to assess the impact of a selective FGFR1 tyrosine kinase inhibitor NP603 on HSC proliferation and hepatic fibrosis. We demonstrated that rat primary HSCs secreted significant amounts of FGF-2, and its tyrosine phosphorylation of FGFR1 was attenuated by NP603. NP603 inhibited HSC activaton by measuring the expression of α-smooth muscle actin (α-SMA) and the production of type I collagen using ELISA. Furthermore, NP603 (25 μM) in vitro strongly suppressed HSC growth induced by FGF-2 (10 ng/ml) and FCS. This effect correlated with the suppression of extracellular-regulated kinase (ERK) activity and its downstream targets cyclin D1 and p21. In addition, PO NP603 (20 mg·kg(-1)·day(-1)) administration significantly decreased hepatic collagen deposition and α-SMA expression in CCl(4)-treated rats. Collectively, these studies suggest that selective blocking of the FGFR1-mediated pathway could be a promising therapeutic approach for the treatment of hepatic fibrosis.  相似文献   

15.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

16.
17.
Xue H  Zhou L  Yuan P  Wang Z  Ni J  Yao T  Wang J  Huang Y  Yu C  Lu L 《Regulatory peptides》2012,177(1-3):12-20
In the updated concept of renin-angiotensin system (RAS), it contains the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angtiogensin type 1 receptor (AT1) axis and the angiotensin-converting enzyme-related carboxypeptidase (ACE2)-Ang-(1-7)-Mas axis. The former axis has been well demonstrated performing the vasoconstrictive, proliferative and pro-inflammatory functions by activation of AT1 receptors, while the later new identified axis is considered counterbalancing the effects of the former. The present study is aimed at observing the interaction between Ang-(1-7) and Ang II on cultured rat renal mesangial cells (MCs). RT-PCR, Western blot and immunofluorescent staining and confocal microscopy results showed that both AT1 and Mas receptor were co-distributed in rat renal MCs. Ang-(1-7) showed similar effects on Ang II in cultured MCs that stimulated phosphorylated extracellular signal-regulated kinase (ERK)1/2 phosphorylation and transforms growth factor-β1 synthesis, and cell proliferation and extracellular matrix synthesis. Co-treatment of the cell with Ang-(1-7) and Ang II, Ang-(1-7) counteracted AngII-induced effects in a concentration dependent manner, but failed to alter the changes induced by endothelin-1. The stimulating effect of Ang II was mediated by AT1 receptor while all the effects of Ang-(1-7) were blocked by Mas receptor antagonist A-779, but not by AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319. These results suggest that Ang-(1-7) and Ang II specifically interact with each other on rat renal MCs via activation of their specific receptors, Mas and AT1 receptor respectively.  相似文献   

18.
Leptin increases human alpha1 (I) collagen mRNA and type I collagen production and enhances hepatic fibrosis in animal models of hepatic fibrosis. These effects of leptin on fibrogenesis may be mediated by TGFbeta1, since leptin increases the TGFbeta type II receptor and augments the effect of TGFbeta1 on collagen production by stellate cells. In this study, leptin increased the activity of the human alpha1 (I) collagen promoter in transfected stellate cells. Leptin did not further enhance the activation of the promoter induced by TGFbeta1. Leptin had no effects on the transfected TGFbeta-responsive p3TP-LUX plasmid, which contains 3 CAGA elements that are essential and sufficient for the induction by TGFbeta. Leptin did not increase significantly the binding of proteins to two TGFbeta1 responsive elements in the human alpha1 (I) collagen promoter. In conclusion, this study shows that leptin activates the alpha1 (I) collagen gene and that this effect is not mediated by TGFbeta responsive elements.  相似文献   

19.
20.
Lu SY  Wang DS  Zhu MZ  Zhang QH  Hu YZ  Pei JM 《Life sciences》2005,77(1):28-38
The aim of the present research is to investigate the effects of vasonatrin peptide (VNP) on hypoxia-induced proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Smooth muscle cells isolated from rat pulmonary artery were cultured and used at passages 3-5. Cell proliferation and collagen synthesis were evaluated by cell counts, [(3)H] thymidine and [(3)H] proline incorporation. The results showed that cells exposed to hypoxia for 24 h exhibited a significant increase in [(3)H] thymidine (93%) and [(3)H] proline (52%) incorporation followed by a significant increase in cell number (47%) at 48 h in comparison with the respective normoxic controls. VNP reduced hypoxia-stimulated increase in cell proliferation in a concentration-dependent manner from 10(-8) to 10(-6) mol/L and attenuated hypoxia-induced collagen synthesis ranging from 10(-6) to 10(-5) mol/L, which is similar to but more potent than both ANP and CNP. The action of VNP on PASMCs was mimicked by 8-bromo-cGMP (10(-4) mol/L, the membrane-permeable cGMP analog), and blocked by HS-142-1 (2 x 10(-5) mol/L), the particulate guanylyl cyclase-coupled natriuretic peptide receptor antagonist, or KT-5823 (10(-6) mol/L), the cGMP-dependent protein kinase (PKG) inhibitor. The results suggest that VNP inhibits hypoxia-stimulated proliferation and collagen synthesis in cultured rat PASMCs via particulate guanylyl cyclase-coupled receptors through cGMP/PKG dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号