首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Summary Four transgenic soybean [Glycine max (L.) Merrill] lines were generated containing the maize 15 kDa zein protein gene using somatic embryogenic protocols. The zein gene was inserted behind the β-phaseolin promoter for seed-specific expression. All four lines represent separate transformation events as they were generated in different experiments at different locations. Two of the transformation events produced multiple plants, and these produced identical Southern hybridization patterns (UKY/Z1, UKY/Z2 and UKY/Z3 from the first; and OSU/Z4, OSU/Z8 and OSU/Z10 from the second). Molecular characterization revealed that multiple copies of the zein gene were present in all of the transgenic lines. Immunoblot analysis confirmed the accumulation of the zein protein product in the seeds of the UKY/Z1, UKY/Z2, UKY/Z3, OSU/Z4, OSU/Z8 and OSU/Z10 transgenic lines. However, there was no accumulation of zein protein in the UGA/Z1 line and Northern analysis confirmed that the zein transgene was silenced in this line. It was not possible to analyze the zein expression in the seeds of the UKY/Z4 line, as it was sterile. Amino acid analysis of the UKY and OSU lines confirmed that there was a 12–20% increase in methionine, and 15–35% increase in cysteine content in these lines compared to the control. There were no consistent changes in the content of the other amino acids in the transgenic lines. These results suggest that while the increase in methionine content in these lines is modest, it is possible to increase the methionine content without adversely affecting the protein composition of soybean.  相似文献   

5.
6.
7.
Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants   总被引:9,自引:0,他引:9  
Summary We have obtained transgenic tobacco plants overexpressing the enzyme glutamine synthetase (GS) by fusing an alfalfa GS gene to the cauliflower mosaic virus 35S promotor and integrating it intoNicotiana tabacum var. W38 plants byAgrobacterium tumefaciens mediated gene transfer. The amount of RNA specific to alfalfa GS was about 10 times higher in transgenic tobacco plants than in alfalfa. The alfalfa GS produced by these transgenic plants was identified by Western blotting and represented 5% of total soluble protein in the transformed plants, amounting to a 5-fold increase in specific GS activity and in a 20-fold increase in resistance to the GS inhibitorl-phosphinothricin in vitro. Tissue from GS overproducing plants showed a sevenfold lower amount of free NH3. The amino acid composition of the plant tissue was not altered significantly by GS overproduction. GS overproducing plants were fertile and grew normally. These data show that a high level of expression of a key metabolic enzyme such as glutamine synthetase does not interfere with growth and fertility of plants.  相似文献   

8.
We have constructed a chimeric gene encoding a Brazil nut methionine-rich seed protein which contains 18% methionine. This gene has been transferred to tobacco and expressed in the developing seeds. Tobacco seeds are able to process the methionine-rich protein efficiently from a larger precursor polypeptide of 17 kDa to the 9kDa and 3 kDa subunits of the mature protein, a procedure which involves three proteolytic cleavage steps in the Brazil nut seed. The accumulation of the methionine-rich protein in the seeds of tobacco results in a significant increase (30%) in the levels of the methionine in the seed proteins of the transgenic plants. Our data indicate that the introduction of a chimeric gene encoding a methionine-rich seed protein into crop plants, particularly legumes whose seeds are deficient in the essential sulfur-containing amino acids, represents a feasible method for improving the nutritional quality of seed proteins.  相似文献   

9.
The expression of proteins in transgenic plants offers an elegant means to examine targeting signals used for transport to intracellular sites of accumulation. We have used electron microscopic immunogold procedures to localize several different storage proteins and lectins expressed in transgenic tobacco seeds. The objective of these studies is to characterize targeting signals which permit translocation and accumulation in protein storage vacuoles (protein bodies). Vacuolar proteins such as phaseolin and phytohemagglutinin (PHA) are correctly transported to the protein storage vacuoles of transgenic tobacco seeds. Site-directed mutagenesis was used to change Asn-linked glycosylation sites of PHA. Minus glycan PHA was accumulated in the protein storage vacuoles indicating that glycans do not confer targeting information. Zein the non-vacuolar storage protein of maize accumulates in the protein storage vacuoles indicating that deposition occurs in some proteins which may lack vacuolar targeting signals.  相似文献   

10.
11.
12.
A chimaeric gene composed of the 5' upstream region of STLS1, a leaf/stem specifically expressed gene from Solanum tuberosum, and the RNA-coding as well as the 3' downstream region of patatin, the major storage protein of potato tubers, has been transferred into tobacco plants using the Agrobacterium system. The introduction of this gene led to a leaf/stem specific expression of a 42-kd large protein which immunocrossreacts with patatin antiserum. Only low amounts of immunoreacting protein of smaller size could be detected in transgenic tobacco leaves indicating that the patatin protein is fairly stable in this heterologous environment. The size of the protein as well as the size of the RNA detected in transgenic tobacco leaves using a patatin-specific probe indicates that the patatin RNA was accurately processed in both leaf and stem tissue of tobacco. The expression of the patatin gene led to the appearance of a new esterase activity in the transformed tobacco which co-migrated with a protein immunoreacting with patatin antiserum. These data therefore demonstrate that patatin in addition to serving as a storage protein displays an enzymatic activity.  相似文献   

13.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

14.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

15.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

16.
A series of 5′ deletions of the pea plastocyanin gene (petE) promoter fused to the β-glucuronidase (GUS) reporter gene has been examined for expression in transgenic tobacco plants. Strong positive and negative cis-elements which modulate quantitative expression of the transgene in the light and the dark have been detected within the petE promoter. Disruption of a negative regulatory element at ?784 bp produced the strongest photosynthesis-gene promoter so far described. Histochemical analysis demonstrated that all petE-GUS constructs directed expression in chloroplast-containing cells, and that a region from ?176 bp to +4 bp from the translation start site was sufficient for such cell-specific expression. The petE-promoter fusions were expressed at high levels in etiolated transgenic tobacco seedlings but there was no marked induction of GUS activity in the light. The endogenous tobacco plastocyanin genes and the complete pea plastocyanin gene in transgenic tobacco plants were also expressed in the dark, but showed a three- to sevenfold increase in the light. This indicates a requirement for sequences 3′ to the promoter for the full light response of the petE gene.  相似文献   

17.
Type II fish antifreeze protein (AFP) is active in both freezing point depression and the inhibition of ice recrystallization. This extensively disulfidebonded 14 kDa protein was targeted for accumulation in its pro and mature forms in the cytosol and apoplast of transgenic tobacco plants. Type II AFP gene constructs under control of a duplicate cauliflower mosaic virus 35S promoter, both with and without a native plant transit peptide sequence, were introduced into tobacco by Agrobacterium tumefaciensmediated transformation. AFP did not accumulate in the cytosol of transgenic plants, but active AFP was present as 2% of the total protein present in the apoplast. Plantproduced AFP was the same size as mature Type II AFP isolated from fish, and was comparable to wildtype AFP in thermal hysteresis activity and its effect on ice crystal morphology. Field trials conducted in late summer on R1 generation transgenic plants showed similar AFP accumulation in plants under field conditions at levels suitable for largescale production: but no difference in frost resistance was observed between transgenic and wildtype plants during the onset of early fall frosts.  相似文献   

18.
The expression of viral coat protein (CP) in transgenic plants has been shown to be very effective in virus plant protection. However, the introduction of CP genes into plants presents the potential risk of the encapsidation of a superinfecting viral genome in the transgenic protein, an event which could change the epidemiology of the disease. To detect the potential heterologous encapsidation of the cucumber mosaic virus (CMV) genome by alfalfa mosaic virus (AIMV) CP expressed in transgenic tobacco plants, a system of immunocapture (IC) and amplification by polymerase chain reaction (PCR) was optimized. This provided high sensitivity and reliable selection of the heterologously encapsidated CMV genome in the presence of natural CMV particles. As little as 2 pg of virus could be detected by immunocapture/polymerase chain reaction (IC/PCR) technique. Evidence for heterologous encapsidation of the CMV genome was found in 11 of the 33 transgenic plants tested two weeks after CMV inoculation. This demonstrates a significant rate of heterologous encapsidation events between two unrelated viruses in transgenic plants. Since CP is involved in the interactions of the virus particle with its vector, the release in the field of such transgenic plants could alter the transmission properties of some important viruses.  相似文献   

19.
20.
Summary A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A fulllength cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号