首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress acts as a double-edged sword by being both a promoter and a suppressor of cancer. Moderate oxidative stress is beneficial for cancer cell proliferative and invasiveness features, while overexposure of the cells to oxidative insults could induce cancer cell apoptosis and reduce hypoxia along with modulating the immune system for regression of tumor. Cancer cells and cancer stem cells have highly efficient redox systems that make them resistant to oxidative insults. The redox disruptive approach is an area of current research and key for oxidative targeted cancer therapies. This disruption is applicable by using either oxidative or anti-oxidative overloading strategies, specifically on cancer cells without influencing normal cells or tissues around tumor. The activity of tumor suppressor cells within tumor microenvironment is needed to be maintained in patients receiving such approaches.  相似文献   

2.
线粒体,活性氧和细胞凋亡   总被引:56,自引:1,他引:56  
在能量代谢和自由基代谢中,线粒体均占据着十分重要的地位.通过呼吸链电子漏途径,线粒体产生大量超氧阴离子,并通过链式反应形成对机体有损伤作用的活性氧.通过呼吸链电子漏,氧化磷酸化解偶联,线粒体内膜产生通透性转变孔道(PTP)及Box-和/或PTP-介导的细胞色素c向胞质的转移等种种因素,线粒体参与一般抗氧化防御及细胞凋亡等重要生理过程的调控.在与线粒体相关的细胞凋亡中,活性氧的信号作用是十分明显的.  相似文献   

3.
Apoptosis effector mechanisms: A requiem performed in different keys   总被引:2,自引:0,他引:2  
Apoptosis is the regulated form of cell death utilized by metazoans to remove unneeded, damaged, or potentially deleterious cells. Certain manifestations of apoptosis may be associated with the proteolytic activity of caspases. These changes are often held as hallmarks of apoptosis in dying cells. Consequently, many regard caspases as the central effectors or executioners of apoptosis. However, this “caspase-centric” paradigm of apoptotic cell death does not appear to be as universal as once believed. In fact, during apoptosis the efficacy of caspases may be highly dependent on the cytotoxic stimulus as well as genetic and epigenetic factors. An ever-increasing number of studies strongly suggest that there are effectors in addition to caspases, which are important in generating apoptotic signatures in dying cells. These seemingly caspase-independent effectors may represent evolutionarily redundant or failsafe mechanisms for apoptotic cell elimination. In this review, we will discuss the molecular regulation of caspases and various caspase-independent effectors of apoptosis, describe the potential context and/or limitations of these mechanisms, and explore why the understanding of these processes may have relevance in cancer where treatment is believed to engage apoptosis to destroy tumor cells.  相似文献   

4.
The mitochondrial theory of aging: dead or alive?   总被引:3,自引:0,他引:3  
Jacobs HT 《Aging cell》2003,2(1):11-17
The mitochondrial theory of aging is based around the idea of a vicious cycle, in which somatic mutation of mtDNA engenders respiratory chain dysfunction, enhancing the production of DNA-damaging oxygen radicals. In turn, this is proposed to result in the accumulation of further mtDNA mutations. Finally, a bioenergetic crisis leads to overt tissue dysfunction and degeneration. A substantial body of circumstantial evidence seems to support this idea. However, the extent of detectable mtDNA mutation is far less than can easily be reconciled to this hypothesis, unless it is assumed that a subset of cells with much higher than average mtDNA mutation load is systematically lost by apoptosis. A rigorous test of the hypothesis remains to be undertaken, but would require a direct manipulation of the rate of mtDNA mutagenesis, to test whether this could alter the kinetics of aging.  相似文献   

5.
6.
Cherchenko  A. P.  Todor  I. M. 《Neurophysiology》2001,33(4):224-228
We measured the rate of oxygen consumption by the mitochondria from the brain tissues of rabbits within a remote period after light cranio-cerebral trauma. One and six months after traumatization, oxidative phosphorylation in rabbits of the experimental groups demonstrated no significant difference from that in the control group. Yet, after a 12-month-long interval, clear differences were observed within the cortical zone with post-traumatic epileptic nidus. The coefficient of energy production decreased, and the process of oxidative phosphorylation became uncoupled. When succinate was used as a substrate for oxidation, we observed significant decreases in the rate of oxygen consumption in ADP phosphorylation and in the coefficient of respiration control. A significant decrease in the rate of oxygen consumption in the resting state (V 2), the absence of disturbances in the respiration control, and preservation of a sufficient reserve ATPase activity were characteristic features when glutamate was used as a substrate. It seems probable that such shifts in oxidative phosphorylation can result in creation of an excessive glutamate pool and provide excessive epileptogenic glutamatergic activation of the neurons.  相似文献   

7.
Mitochondria and reactive oxygen species in renal cancer   总被引:3,自引:0,他引:3  
Hervouet E  Simonnet H  Godinot C 《Biochimie》2007,89(9):1080-1088
  相似文献   

8.
To demonstrate that an uncoupling of respiration and phosphorylation, measured in vitro, reflects an in vivo situation, we badly need in vivo measurements of some uncoupling-linked parameters. The importance of this assertion is illustrated by studies of Barja and co-workers. A lower rate of H(2)O(2) production by mitochondria isolated from long-lived birds compared with short-lived mammals of the same body weight (see publications by Barja's and Sohal's groups) could be explained by (i) an in vivo difference or (ii) an in vitro artefact. In both cases, the reason for lower H(2)O(2) production may well be the same, i.e. a mild uncoupling of respiration in avian mitochondria showing lowered respiratory control. Again, this should be due to an in vivo operation of some bird-specific natural uncouplers (the first case) or stronger in vitro damage to the avian mitochondria during their isolation and incubation (the second). The latter possibility seemed more probable when Barja and co-workers revealed that the level of antioxidants in birds is lower than in mammals. However, further studies by the same group showed that the degree of unsaturation of fatty acids in birds is lower than in mammals, indicating a greater resistance of avian mitochondria to oxidative damage in vitro. Indeed, it was found that lipid peroxidation in isolated avian mitochondria occurs at a much lower rate than in mammals. More importantly, the in vivo level of peroxidation of lipids and proteins appears to be lower in birds than in mammals. Thus, it seems probable that longer lifespan of birds really does correlate with a slower rate of production of H2O2 by mitochondria in vivo.  相似文献   

9.
氧化修饰在调控细胞凋亡信号转导中的作用   总被引:2,自引:0,他引:2  
氧化修饰是细胞内的活性氧诱导生物大分子发生氧化反应引起的结构及构象改变,发挥调控信号转导和对应激作出反应的功能。氧化修饰发生在凋亡信号转导中的多个生物大分子,包括凋亡相关蛋白质的氧化,如caspase-9、线粒体通透性转变孔及电压依赖的阴离子通道(voltagedependent anion channel,VDAC),同时也包括膜磷脂的氧化修饰,如磷脂酰丝氨酸及线粒体特异的心磷脂。氧化修饰作用也涉及凋亡诱导因子、促凋亡的凋亡信号调控激酶1(apoptosis signalregulatin gkinasel,ASK1)信号转导途径及抗凋亡的转录因子NF—kB的激活和活性。所以氧化修饰可能是调控凋亡信号转导机制中除磷酸化、泛素化外的另一个新的分子机制。  相似文献   

10.
The excessive and inappropriate production of reactive oxygen species (ROS) can cause oxidative stress and is implicated in the pathogenesis of lung cancer. Cyclophilin A (CypA), a member of the immunophilin family, is secreted in response to ROS. To determine the role of CypA in oxidative stress injury, we investigated the role that CypA plays in human lung carcinoma (A549) cells. Here, we showed the protective effect of human recombinant CypA (hCypA) on hydrogen peroxide (H2O2)-induced oxidative damage in A549 cells, which play crucial roles in lung cancer. Our results demonstrated that hCypA substantially promoted cell viability, superoxide dismutase (SOD), glutathione (GSH), and GSH peroxidase (GSH-Px) activities, and attenuated ROS and malondialdehyde (MDA) production in H2O2-induced A549 cells. Compared with H2O2-induced A549 cells, Caspase-3 activity in hCypA-treated cells was significantly reduced. Using Western blotting, we showed that hCypA facilitated Bcl-2 expression and inhibited Bax, Caspase-3, Caspase-7, and PARP-1 expression. Furthermore, hCypA activates the PI3K/Akt/mTOR pathway in A549 cells in response to H2O2 stimulation. Additionally, peptidyl-prolyl isomerase activity was required for PI3K/Akt activation by CypA. The present study showed that CypA protected A549 cells from H2O2-induced oxidative injury and apoptosis by activating the PI3K/Akt/mTOR pathway. Thus, CypA might be a potential target for lung cancer therapy.  相似文献   

11.
12.
Our results provide evidence that 6-hydroxydopamine induced, after auto-oxidation, toxic levels of hydrogen peroxide (H2O2) that caused bovine chromaffin cell toxicity and death. 6-Hydroxydopamine (6-OHDA) treatment markedly reduced, in a dose-response fashion, chromaffin cell viability. Cell death was accompanied by cell shrinkage, nuclear condensation and DNA degradation. Under our experimental conditions, 6-OHDA auto-oxidation formed quinones and reactive oxygen species (ROS) that mainly contributed to 6-OHDA-induced cytotoxicity in bovine chromaffin cells. Accordingly, different antioxidants, including catalase, vitamin E, Mn(IIItetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or ascorbic acid, provided protection against 6-OHDA-induced toxicity. Further evidence that 6-OHDA induces oxidative stress is provided by the fact that this compound decreased total mitochondrial reduced NAD(P)H levels. Our results also suggest that mitochondrial swelling and caspase activation do not play a direct role in 6-OHDA-induced death in bovine chromaffin cells.  相似文献   

13.
14.
Neuroprotection by estrogen in the CNS is well-documented and comprises the intricate regulation of cell–cell communication between neurons and supportive non-neuronal glial cells. It is assumed that these interactions are essential for cell survival under pathological and toxic conditions by regulating the allocation of trophic molecules, e.g., growth factors, controlling relevant intracellular anti-apoptotic and death cascades, and attenuating inflammatory processes. Malfunction and disturbance of mitochondria are doubtlessly associated with brain cell degeneration during neurotoxic and neurodegenerative processes. Estrogen has been documented as protective agent in the brain by stimulating growth factor supply and cell-intrinsic pro-/anti-apoptotic signaling pathways. In recent years, an additional estrogen-dependent safe-guarding strategy comes into the focus of neuronal protection. The mitochondrial compartment appears to be regulated by estrogen at the level of ATP and reactive oxygen species production as well as under a structural-functional viewpoint. In the present article, we would like to highlight recent data which demonstrate that sex steroids can directly and indirectly interfere with mitochondrial properties via non-nuclear, presumably mitochondria-intrinsic and nuclear signaling mechanisms. This enables mitochondria to cope with pathological processes and provide stabile local energy homeostasis and an anti-apoptotic base setting in the brain which, in turn, is a prerequisite for neuronal survival.  相似文献   

15.
16.
Maintenance of normal intracellular redox status plays an important role in such processes as DNA synthesis, gene expression, enzymatic activity, and others. In addition, it is clear that changes in the redox status of intracellular content and individual molecules, resulting from stress or intrinsic cellular activity, are involved in the regulation of different processes in cells. Small changes in intracellular levels of reactive oxygen species participate in intracellular signaling. Thiol-containing molecules, such as glutathione, thioredoxins, glutaredoxins, and peroxiredoxins, also play an important role in maintaining redox homeostasis and redox regulation. This review attempts to summarize the current knowledge about redox regulation in different cell types.  相似文献   

17.
It is a well-known fact that a mature seed can survive losing most of its water, yet how seeds acquire desiccation-tolerance is not well understood. Through sampling maize embryos of different developmental stages and comparatively studying the integrity, oxygen consumption rate and activities of antioxidant enzymes in the mitochondria, the main origin site of reactive oxygen species (ROS) production in seed cells, we found that before an embryo achieves desiccation-tolerance, its mitochondria shows a more active metabolism, and might produce more ROS and therefore need a more effective ROS scavenging system. However, embryo dehydration in this developmental stage declined the activities of most main antioxidant enzymes and accumulated thiobarbituric acid-reactive products in mitochondria, and then destroyed the structure and functional integrity of mitochondria. In physiologically-matured embryos (dehydration-tolerant), mitochondria showed lower metabolism levels, and no decline in ROS scavenging enzyme activities and less accumulation of thiobarbituric acid-reactive products after embryo dehydration. These data indicate that seed desiccation-tolerance acquisition might be associated with down-adjustment of the metabolism level in the late development stage, resulting in less ROS production, and ROS scavenging enzymes becoming desiccation-tolerant and then ensuring the structure and functional integrity of mitochondria.  相似文献   

18.
It is a well-known fact that a mature seed can survive losing most of its water, yet how seeds acquire desiccation- tolerance is not well understood. Through sampling maize embryos of different developmental stages and comparatively studying the integrity, oxygen consumption rate and activities of antioxidant enzymes in the mitochondria, the main origin site of reactive oxygen species (ROS) production in seed cells, we found that before an embryo achieves desiccation-tolerance, its mitochondria shows a more active metabolism, and might produce more ROS and therefore need a more effective ROS scavenging system. However, embryo dehydration in this developmental stage declined the activities of most main antioxidant enzymes and accumulated thiobarbituric acid-reactive products in mitochondria, and then destroyed the structure and functional integrity of mitochondria. In physiologically-matured embryos (dehydration- tolerant), mitochondria showed lower metabolism levels, and no decline in ROS scavenging enzyme activities and less accumulation of thiobarbituric acid-reactive products after embryo dehydration. These data indicate that seed desiccation- tolerance acquisition might be associated with down-adjustment of the metabolism level in the late development stage, resulting in less ROS production, and ROS scavenging enzymes becoming desiccation-tolerant and then ensuring the structure and functional integrity of mitochondria.  相似文献   

19.
Comment on: Formentini L, et al. Mol Cell 2012; 45:731-42.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号