首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goals of chemoprevention of cancer are to inhibit the initiation or suppress the promotion and progression of preneoplastic lesions to invasive cancer through the use specific natural or synthetic agents. Therefore, a more desirable and aggressive approach is to eliminate aberrant clones by inducing apoptosis rather than merely slowing down their proliferation. The increased understanding of apoptosis pathways has directed attention to components of these pathways as potential targets not only for chemotherapeutic but also for chemopreventive agents. Activation of death receptors triggers an extrinsic apoptotic pathway, which plays a critical role in tumor immunosurveillance. An increasing number of previously identified chemopreventive agents were found to induce apoptosis in a variety of premalignant and malignant cell types in vitro and in a few animal models in vivo. Some chemopreventive agents such as non-steroidal anti-inflammatory drugs, tritepenoids, and retinoids increase the expression of death receptors. Thus, understanding the modulation of death receptors by chemopreventive agents and their implications in chemoprevention may provide a rational approach for using such agents alone or in combination with other agents to enhance death receptor-mediated apoptosis as a strategy for effective chemoprevention of cancer.  相似文献   

2.
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.  相似文献   

3.
Mechanisms of fenretinide-induced apoptosis   总被引:6,自引:2,他引:4  
Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.  相似文献   

4.
Control of cell proliferation in cancer prevention.   总被引:13,自引:0,他引:13  
H Mori  S Sugie  N Yoshimi  A Hara  T Tanaka 《Mutation research》1999,428(1-2):291-298
Control of cell proliferation is important for cancer prevention since cell proliferation has essential roles in carcinogenesis including the process of initiation and promotion. In rodent models for carcinogenesis, especially those for the carcinogenesis in digestive organs such as colon, liver or oral cavity, chemopreventive agents suppress carcinogen-induced hyperproliferation of cells in the target organs during the initiation as well as the postinitiation phases. Therefore, effective agents usually suppress cell proliferation and inhibit the occurrence of malignant lesions. Availability of new biomarkers for cell proliferation, apoptosis or telomerase activity could be promising. By combining the use of intermediate biomarkers including premalignant lesions such as aberrant crypt foci in the colon or enzyme-altered foci in the liver and cell proliferation, short-term screening of effective chemopreventive agents will be possible.  相似文献   

5.
Teriflunomide (TFN) reportedly inhibits de novo pyrimidine synthesis and exhibits anti-inflammatory, disease-modifying activities in vivo. These qualities would suggest that TFN could be useful in skin cancer chemoprevention or therapy. We investigated some mechanistic aspects of this tenet by characterizing the effects of TFN on premalignant and malignant human cutaneous keratinocytes. TFN promoted a dose- and/or time-dependent cytostasis and in these cells, which was followed by apoptosis. These features occurred in the presence of a physiological concentration of uridine in the culture medium. The short-term S phase arrest triggered by TFN was reversible in the malignant keratinocytes, and the indirect apoptosis induction was apparently preceded by mitochondrial disruption and reactive oxygen species production in both the premalignant and malignant keratinocytes. Respiration deficient malignant keratinocytes were resistant to the acute cytostatic and latent apoptotic effects of TFN implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiring cells. These novel mechanistic findings support a role for TFN in skin cancer chemoprevention and therapy.  相似文献   

6.
Carcinogenesis and cancer therapy are two sides of the same coin, such that the same cytotoxic agent can cause cancer and be used to treat cancer. This review links carcinogenesis, chemoprevention and cancer therapy in one process driven by cytotoxic agents (carcinoagents) that select either for or against cells with oncogenic alterations. By unifying therapy and cancer promotion and by distinguishing nononcogenic and oncogenic mechanisms of resistance, I discuss anticancer- and chemopreventive agent-induced carcinogenesis and tumor progression and, vice versa, carcinogens as anticancer drugs, anticancer drugs as chemopreventive agents and exploiting oncogene-addiction and drug resistance for chemoprevention and cancer therapy.  相似文献   

7.
Chemoprevention is the administration of agents (drugs, biologics, and nutrients) to prevent induction, inhibit, or delay the progression of cancers. Prostate cancer is an important target for chemoprevention because of its long latency and high prevalence. The development of rational chemopreventive strategies requires knowledge of the mechanisms of prostate carcinogenesis and identification of agents that interfere with these mechanisms. Because of the long time period for prostate carcinogenesis and the large size of the cohort required for an evaluable study, identification and characterization of early intermediate biomarkers and their validation as surrogate endpoints for cancer incidence are essential for chemopreventive agent development. Finally, suitable populations with appropriate risk factors, including the presence of premalignant lesions and genetic predispositions, need to be well characterized for future chemopreventive interventions.  相似文献   

8.
Bode AM  Dong Z 《Mutation research》2004,555(1-2):33-51
Cancer is a dynamic process that involves many complex factors, which may explain why a "magic bullet" cure for cancer has not been found. Death rates are still rising for many types of cancers, which possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. This strategy for cancer control is based on the presumption that because cancer develops through a multi-step process, each step may be a prospective target for reversing or suppressing the process. Thus, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to control cancer. Nutritional or dietary factors have attracted a great deal of interest because of their perceived ability to act as highly effective chemopreventive agents. They are professed as being generally safe and may have efficacy as chemopreventive agents by preventing or reversing premalignant lesions and/or reducing second primary tumor incidence. Many of these dietary compounds appear to act on multiple target signaling pathways. Some of the most interesting and well documented are resveratrol and components of tea, including EGCG, theaflavins and caffeine. This review will focus on recent work regarding three well-accepted cellular/molecular mechanisms that may at least partially explain the effectiveness of selected food factors, including those indicated above, as chemopreventive anti-promotion agents. These food compounds may act by: (1) inducing apoptosis in cancer cells; (2) inhibiting neoplastic transformation through the inhibition of AP-1 and/or NF-kappaB activation; and/or (3) suppressing COX-2 overexpression in cancer cells.  相似文献   

9.
Cancer is a multi-stage process resulting from aberrant signaling pathways driving uncontrolled proliferation of transformed cells. The development and progression of cancer from a premalignant lesion towards a metastatic tumor requires accumulation of mutations in many regulatory genes of the cell. Different chemopreventative approaches have been sought to interfere with initiation and control malignant progression. Here we present research on dietary compounds with evidence of cancer prevention activity that highlights the potential beneficial effect of a diet rich in cruciferous vegetables. The Brassica family of cruciferous vegetables such as broccoli is a rich source of glucosinolates, which are metabolized to isothiocyanate compounds. Amongst a number of related variants of isothiocyanates, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis. Anti-inflammatory, pro-apoptotic and modulation of histones are some of the more important and known mechanisms by which SFN exerts chemoprevention. The effect of SFN on cancer stem cells is another area of interest that has been explored in recent years and may contribute to its chemopreventive properties. In this paper, we briefly review structure, pharmacology and preclinical studies highlighting chemopreventive effects of SFN.  相似文献   

10.
The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer.  相似文献   

11.
Mitochondria play a pivotal role in the regulation of apoptosis. An imbalance in apoptosis can lead to disease. Unscheduled apoptosis has been linked to neurodegeneration while inhibition of apoptosis can cause cancer. An early and key event during apoptosis is the release of factors from mitochondria. In apoptosis the mitochondrial outer membrane becomes permeable, leading to release of apoptogenic factors into the cytosol. One such factor, cytochrome c, is an electron carrier of the respiratory chain normally trapped within the mitochondrial intermembrane space. Many apoptotic studies investigate mitochondrial outer membrane permeabilization (MOMP) by monitoring the release of cytochrome c. Here, we describe three reliable techniques that detect cytochrome c release from mitochondria, through subcellular fractionation or immunocytochemistry and fluorescence microscopy, or isolated mitochondria and recombinant Bax and t-Bid proteins in vitro. These techniques will help to identify mechanisms and characterize factors regulating MOMP.  相似文献   

12.
The present article, which is a tribute to the memory of Dr. Edward Bresnick, emphasizes the importance of environmental and life-style factors for cancer causation in the human population and points out approaches to cancer prevention. These approaches include vaccinations for the prevention of cancers that are caused by infectious agents as well as the use of cancer chemopreventive agents. The use of tamoxifen and letrozole to prevent breast cancer, finasteride to prevent prostate cancer, sunscreens or topical applications of 5-fluorouracil to prevent sunlight-induced skin cancer, and aspirin or calcium to prevent colon cancer are a few examples of cancer chemoprevention in high risk individuals and in the general population. An underdeveloped area of cancer chemoprevention is the use of combinations of agents that work by different mechanisms. It was pointed out that animal studies indicate that many cancer chemopreventive agents inhibit carcinogenesis under one set of experimental conditions but enhance carcinogenesis under another set of experimental conditions. These observations suggest that tailoring the chemopreventive regimen to the individual or to groups of individuals living under different environmental conditions or with different mechanisms of carcinogenesis may be an important aspect of cancer chemoprevention in human populations. How to tailor cancer chemoprevention regimens to the individual is an important challenge for the future.  相似文献   

13.
Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.  相似文献   

14.
15.
Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.  相似文献   

16.
One practical way to control cancer is through chemoprevention, which refers to the administration of synthetic or naturally occurring agents to block, reverse or delay the process of carcinogenesis. For a variety of reasons, the most important of which is human acceptance, for chemopreventive intervention naturally occurring diet-based agents are preferred over synthetic agents. For a long time, the prevailing mantra of cancer chemoprevention has been: "Find effective agents with acceptable or no toxicity and use them in preventing cancer in relatively healthy people or individuals at high risk for developing cancer". In pursuing this goal many naturally occurring phytochemicals capable of affording protection against carcinogenesis in preclinical settings in experimental animals have been described. However, clinical trials of single agents have yielded disappointing results. Since carcinogenesis is a multistage phenomenon in which many normal cellular pathways become aberrant, it is unlikely that one agent could prove effective in preventing cancer. This review underscores the need to build an armamentarium of naturally occurring chemopreventive substances that could prevent or slow down the development and progression of prostate cancer. Thus, the new effective approach for cancer prevention "building a customized mechanism-based chemoprevention cocktail of naturally occurring substances" is advocated.  相似文献   

17.
Retinoids such as all trans-retinoic acid (ATRA) have been used as chemopreventive agents for a number of premalignant conditions. To explore a potential role for retinoids as chemopreventive agents for Barrett's esophagus, we studied ATRA's effects on apoptosis in a nonneoplastic, telomerase-immortalized, metaplastic Barrett's cell line. We treated the Barrett's cells with ATRA in the presence and absence of inhibitors to p53 (pSRZ-siRNA-p53), p38 (SB-203580 and p38 siRNA), and the caspase cascade (z-Val-Ala-Asp-fluoromethyl ketone). We determined the effects of ATRA and the various inhibitors on apoptosis using cell morphology, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining, cleaved caspase-3 immunofluorescence, and Annexin V staining. We also determined how ATRA in the presence and absence of the inhibitors affected apoptosis following low-dose UV-B irradiation. ATRA induced apoptosis and increased the expression of p53 protein in a dose-dependent fashion. The apoptotic effect of ATRA was abolished by treatment with inhibitors of both p38 and caspase, but not by p53 interfering RNA (RNAi). Inhibition of p38 also prevented expression of cleaved caspase-3, suggesting that ATRA activates p38 upstream of the caspase cascade. We found that ATRA sensitized immortalized Barrett's cells to apoptosis induced by low-dose UV-B irradiation via a similar mechanism. ATRA induces apoptosis in Barrett's epithelial cells and sensitizes them to apoptosis induced by UV-B irradiation via activation of p38 and the caspase cascade, but not through p53. This study elucidates molecular pathways whereby retinoid treatment might prevent carcinogenesis in Barrett's metaplasia and suggests a potential role for the use of safer retinoids for chemoprevention in Barrett's esophagus.  相似文献   

18.
Ferulic acid plays a chemopreventive role in cancer by inducing tumor cells apoptosis. As mitochondria play a key role in the induction of apoptosis in many cells types, here we investigate the mitochondrial permeability transition (MPT) and the release of cytochrome c induced by ferulic acid and its esters in rat testes mitochondria, in TM-3 and MLTC-1 cells. While ferulic acid, but not its esters, induced MPT and cytochrome c release in rat testes isolated mitochondria, in TM-3 cells we found that both ferulic acid and its esters induced cytochrome c release from mitochondria in a dose-dependent manner, suggesting a potential target of these compounds in the induction of cell apoptosis. The apoptosis induced by ferulic acid is therefore associated with the mitochondrial pathway involving cytochrome c release and caspase-3 activation. Cione and Tucci have equally contributed to this article.  相似文献   

19.
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.  相似文献   

20.
Post-mitotic neurons and heart muscle cells undergo apoptotic cell death in a variety of acute and chronic degenerative diseases. The intrinsic pathway of apoptosis involves the permeabilization of mitochondrial membranes, which leads to the release of protease and nuclease activators, and to bioenergetic failure. Mitochondrial permeabilization is induced by a variety of pathologically relevant second messengers, including reactive oxygen species, calcium, stress kinases and pro-apoptotic members of the Bcl-2 family. Several pharmacological agents act on mitochondria to prevent the permeabilization of their membranes, thereby inhibiting apoptosis. Such agents include inhibitors of the permeability transition pore complex (in particular ligands of cyclophilin D), openers of mitochondrial ATP-sensitive or Ca(2+)-activated K(+) channels, and proteins from the Bcl-2 family engineered to cross the plasma membrane. In addition, manipulations that modulate the expression or activity of mitochondrial uncoupling proteins can prevent the death of post-mitotic cells. Such agents hold promise for use in clinical neuroprotection and cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号