首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analysed aspects of the embryonic development of the stomatopod crustacean Gonodactylaceus falcatus focusing on the cell division in the ectoderm of the germ band. As in many other malacostracan crustaceans, the growth zone in the caudal papilla is formed by 19 ectoteloblasts and 8 mesoteloblasts arranged in rings. These teloblasts give rise to the cellular material of the largest part of the post-naupliar germ band in a stereotyped cell division pattern. The regularly arranged cells of the genealogical units produced by the ectoteloblast divide twice in longitudinal direction. The intersegmental furrows form within the descendants of one genealogical unit in the ectoderm. Hence, embryos of G. falcatus share some features of the stereotyped cell division pattern with that in other malacostracan crustaceans, which is unique among arthropods. In contrast to the other malacostracan taxa studied so far, stomatopods show slightly oblique spindle direction and a tilted position of the cells within the genealogical units. The inclusion of data on Leptostraca suggests that aspects of stereotyped cell divisions in the germ band must be assumed for the ground pattern of Malacostraca. Moreover, Stomatopoda and Leptostraca share the lateral displacement of cells during the mediolateral divisions of the ectodermal genealogical units in the post-naupliar germ band. The Caridoida within the Eumalacostraca apomorphically evolved the strict longitudinal orientation of spindle axes and cell positions, reaching the highest degree of regularity in the Peracarida. The phylogenetic analysis of the distribution of developmental characters is the prerequisite for the analysis of the evolution of developmental patterns and mechanisms.  相似文献   

2.
Zusammenfassung Die Differenzierung der hinter den Mandibeln gebildeten ektodermalen Querreihen des Keimstreifs vonDiastylis wird beschrieben. 4 dieser Querreihen von Zellen werden nicht durch Ektoteloblasten gebildet, sondern lagern sich direkt als Blastodermzellen aneinander. Dahinter werden 12 Reihen durch Ektoteloblasten gebildet. Die Ektoteloblasten teilen sich zum Schlu\ in die Reihen XIII und XIV. Alle Zellreihen treten in eine Folge von differentiellen Teilungen ein, so da\ die genaue Differenzierung und Musterbildung der Zellen bis zur Bildung von Ganglienanlagen und ExtremitÄtenknospen zellgenealogisch verfolgt werden kann. Die ersten 2 Reihen hinter den Mandibeln, die Reihen (0) und (1), tragen zur Bildung des vorderen und mittleren Teils des 1. Maxillensegments bei. Der hintere Teil des 1. Maxillensegments wird durch die vorderen Zellabkömmlinge der Reihe (2) gebildet. Die 1. Maxille ist aus Zellen von verschiedenen Zellklonen zusammengesetzt, die zur Reihe (1) und (2) gehören. Die 2. Maxille und die Thorakalbeine werden ebenfalls durch verschiedene Zellklone zusammengesetzt.Die Reihen (2) und (3) haben ein Ähnliches Differenzierungsmuster. Die Unterschiede betreffen hauptsÄchlich den extremitÄtenbildenden Bereich. Die Reihe (3) und die erste ektoteloblastisch gebildete Reihe I sowie die folgenden extremitÄtenbildenden Reihen sind in ihrer Differenzierung fast identisch. Die Ganglien bilden sich durch Neuroblasten, welche Ganglienmutterzellen ins Innere abgeben. Die Neuroblasten haben ein kompliziertes Teilungsmuster. Sie können sich auch nach Abgabe von Ganglienmutterzellen Äqual teilen. Die Intersegmentalfurchen laufen schrÄg durch die Abkömmlinge einer Reihe und markieren nicht die genealogischen Grenzen.Die Ergebnisse werden im Vergleich mit anderen Mandibulaten, besonders mit den Insekten diskutiert. Es ergeben sich interessante Ähnlichkeiten und Unterschiede in der Bildung eines morphologischen Differenzierungszentrums und in der Anlage von ExtremitÄtenknospen, von Ganglien und Intersegmentalfurchen.
Formation and differentiation of the post-naupliar germ bandm Diastylis rathkei (crustacea, cumacea)II. Differentiation and pattern formation of the ectoderm
Summary The differentiation of ectodermal cell rows arranged on the germ band ofDiastylis behind the presumptive mandibular segment is described. 4 of the cell rows are not budded off from ectoteloblasts, but are formed directly by blastoderm cells. Behind these 4 rows, 12 cell rows are budded off from ectoteloblasts. Eventually, the ectoteloblasts divide to form rows XIII and XIV. All of these cell rows have a fixed sequence of mitoses by which a detailed analysis of the cell-lineage up to the formation of ganglion anlagen and appendage buds is possible. The rows (0) and (1) form the anterior and middle parts of the maxillular segment. The posterior part of this segment is formed by derivatives of the subsequent cell row (2). Thus, the maxillulae are complex structures, composed by cells from different cell clones. The maxillae and the thoracic limbs are complex structures as well. Rows (2) and (3) have a similar differentiation pattern. The differences are mainly found in the appendage-forming parts. The differentiation of row (3) is nearly identical to row I, i.e. the first row budded off from ectoteloblasts, and to the subsequent rows II–VI.Ganglion cells are formed by the division of ganglion mother cells that are budded off from neuroblasts. The neuroblasts have a complicated pattern of divisions. There may be an alternation of unequal and equal mitoses. The intersegmental furrows run in a transverse and slightly oblique plane through the derivatives of one cell row. They do not indicate genealogical boundaries.The results are compared with similar developmental processes in other Mandibulata, especially Insecta. The similarities and differences in the existence of a morphological differentiation center and in the formation of appendage buds, ganglion anlagen, and intersegmental furrows are discussed.
  相似文献   

3.
In crustaceans, invariant cell lineages have been shown to occur (i) in early cleavages of several taxa and (ii) in the course of formation and differentiation of the post-naupliar germ bands in malacostracans. Work on early cleavages is still in its infancy. In contrast, the generation and proliferation of mesoteloblasts and ectoteloblasts and the subsequent proliferation and differentiation of bandlet cells have been studied in members of several subgroups of Malacostraca. Similarities and differences have been determined in order to interpret the interdependencies of the steps in the differentiation process. Some of these steps are highly conserved, as in the case of the generation of four pairs of mesoteloblasts, others are prone to phylogenetic change, as in the case of the primary ring of 19 ectoteloblasts which has been altered at least twice in evolution. A stereotyped cleavage pattern in the germ band has been shown to be independent of the origin of the precursor cells. The question whether neuroblasts in crustaceans and insects are homologous or are the result of convergent evolution is still open. However, the homology of early differentiating neurons in crustaceans and insects seems to be well established. In addition, similarities in the expression patterns of the engrailed gene are likely to be homologous and point to a close relationship between these two groups.  相似文献   

4.
Zusammenfassung In diesem 1. Teil der Untersuchungen über die Entwicklung des postnauplialen Keimstreifs bei Diastylis rathkei wird die Furchung, die Blastodermbildung und die Entstehung fast sämtlicher Elemente des postnauplialen Keimstreifs bis zu ihrer Anordnung in Querreihen beschreiben. Die Voraussetzungen für eine solche Arbeit an fixiertem Material werden definiert.
Formation and Differentiation of the post-Nauphar germ band in Diastylis rathkei (Crustacea, Cumacea)I. Formation of teloblasts and their descendants
The segmentation, first differentiation of the blastoderm, formation of the ectodermal teloblasts and their descendants, the arrangement of nonteloblastic ectodermal cells in rows in front of the ectodermal teloblasts, and the origin of mesodermal teloblasts and their descendants are described. The cell-lineage of nearly all post-naupliar elements is ascertained by recording their mitoses. The results are discussed in the view of a probable analysis of early developmental processes in comparison with Crustaceans and other Arthropods, esp. Insects.
  相似文献   

5.
Malacostracan crustaceans have evolved a conserved stereotyped cell division pattern in the post-naupliar germ band. This cleavage pattern is unique in arthropods investigated so far, and allows a combined analysis of gene expression and cell lineage during segmentation and organ development at the level of individual cells. To investigate the cell lineage in the germ band of the isopod Porcellio scaber, we used a 4D-microscopy system, which enables us to analyse every cell event in the living embryo. The study was combined with the analysis of the expression of the gene engrailed (en) at different stages of germ band formation. Our findings confirm the results of earlier investigations of the cell division pattern in the posterior part of the isopod germ band. Furthermore, we can show that in the anterior region, in contrast to the posterior part, cleavage directions are variable and cell sorting takes place—similar to other arthropod germ bands. Additionally, the gene expression pattern of en in this region is not as regular as in the post-naupliar germ band, and only later becomes regulated into its characteristic stripe pattern. The comparison of the cell lineage of P. scaber with that of other malacostracan crustaceans shows an enhancement in the velocity of cell divisions relative to the arrangement of these cells in rows in the isopod germ band. The striking similarity of the formation of the genealogical units in the anterior part suggests a sister group relationship between the peracarid taxa Tanaidacea and Isopoda.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
In most species of lepidopteran insects, anteroposterior rows formed by scales are arranged at regular intervals in the adult wing; within each row two kinds of scales are alternately arranged. To investigate the cellular basis for the scale arrangement pattern, we examined cell arrangement in the epidermal monolayer of the pupal wing of a small white cabbage butterfly, Pieris rapae , by scanning electron microscopy and light microscopy.
The arrangement of scale precursor cells, closely resembling that of scales in the adult wing, was observed in the wing epidermis of the early pupa. Scale precursor cells are proximodistally elongated and form anteroposterior rows. Within a row two kinds of scale precursor cells are nearly alternately arranged, which is not so precise as the alternation of scales in the adult wing. Individual rows of scale precursor cells are separated by rows of single or double undifferentiated general epidermal cells. Occasionally, arrangement abnormalities occur both in the adult and the pupal wing. The cellular basis for the regular spacing of scale rows is discussed.  相似文献   

7.
Determination of cleavage pattern in embryonic blast cells of the leech   总被引:1,自引:0,他引:1  
The o blast cells of the leech embryo become committed to one of two alternative cleavage geometries shortly before they divide. Cleavage geometry depends upon the presence or absence of the adjoining p bandlet, and if that bandlet is ablated, the pattern of o blast cell cleavages will undergo an abrupt transition several hours later. Previous work has shown that the oblast cell becomes committed to the formation of a particular complement of postmitotic descendants early in its differentiation, but the present findings suggest that cleavage pattern and descendant fate are determined at separate commitment events.  相似文献   

8.
螅状独缩虫表膜下纤毛系及形态发生   总被引:12,自引:0,他引:12  
施心路  余育和  沈韫芬 《动物学报》2001,47(1):13-18,T001,T002
利用蛋白银技术研究了螅状独缩虫无性生殖周期中的形态发生。结果表明:(1)在大核形态尚未出现明显变化时,生发毛基索(GK)的前端即出现原基,随后原基增生扩大。最早出现的是两条将来分别演化为新仔虫第三咽膜(P′3)和第二咽膜(P′2)的原基带,随后出现的是位于外侧的新仔虫的单毛基索(HK′)。同时,新仔虫的第一咽膜(P′1)也开始由老单毛基索(HK)复制,并在细胞分裂后期与老结构分离;(2)大核在虫体分裂过程中由长带状逐渐缩短变粗至扁圆形,于虫体即将分开时迅速拉长,然后分裂为二个新大核;小核分裂先于大核,在两仔虫口毛器即将分开时完成;(3)原帚胚及柄归属老仔虫,新仔虫的帚胚在虫体分裂后逐渐形成,柄内肌丝则在柄鞘形成后逐渐长出。  相似文献   

9.
The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled.  相似文献   

10.
Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.  相似文献   

11.
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.  相似文献   

12.
Abstract. Ciliary filter-feeding structures of gymnolaemate bryozoans—adults of Flustrellidra hispida and Alcyonidium gelatinosum , larvae of Membranipora sp.—were studied with SEM. In F. hispida and A. gelatinosum , the distal part of each tentacle has a straight row of stiff laterofrontal cilia which carry out "ciliary sieving" to capture suspended food particles that are subsequently transported downward towards the mouth by tentacle flicking; both structure and function resemble those of stenolaemate tentacles. The proximal part of the tentacle and of the ciliary ridge of a cyphonautes larva have strikingly similar structures, except that the laterofrontal cells are monociliate in the adults and biciliate in the larvae. The laterofrontal cells of the tentacles are arranged in a zigzag row and their cilia form two parallel rows, a frontal and a lateral row. The latter probably forms the sieve of stiff filter cilia in front of the water-pumping lateral cilia, whereas the frontal row appears to be held close to the frontal ciliary band of the tentacle. The biciliate laterofrontal cells of the cyphonautes larva have the cilia arranged in similar rows. The detailed morphological similarities between the ciliary bands of adult and larval filtering structures suggest that the feeding mechanisms are similar, contrary to what has been previously thought.  相似文献   

13.
The architecture of the adult arthropod visual system for many decades has contributed important character sets that are useful for reconstructing the phylogenetic relationships within this group. In the current paper we explore whether aspects of eye development can also contribute new arguments to the discussion of arthropod phylogeny. We review the current knowledge on eye formation in Trilobita, Xiphosura, Myriapoda, Hexapoda, and Crustacea. All euarthropod taxa share the motif of a proliferation zone at the side of the developing eye field that contributes new eye elements. Two major variations of this common motif can be distinguished: 1. The “row by row type” of Trilobita, Xiphosura, and Diplopoda. In this type, the proliferation zone at the side of the eye field generates new single, large elements with a high and variable cell number, which are added to the side of the eye and extend rows of existing eye elements. Cell proliferation, differentiation and ommatidial assembly seem to be separated in time but spatially confined within the precursors of the optic units which grow continuously once they are formed (intercalary growth). 2. The “morphogenetic front type” of eye formation in Crustacea + Hexapoda (Tetraconata). In this type, there is a clear temporal and spatial separation of the formation and differentiation processes. Proliferation and the initial steps of pattern formation take place in linear and parallel mitotic and morphogenetic fronts (the mitotic waves and the morphogenetic furrow/transition zone) and numerous but small new elements with a strictly fixed set of cells are added to the eye field. In Tetraconata, once formed, the individual ommatidia do not grow any more. Scutigeromorph chilopods take an intermediate position between these two major types. We suggest that the “row by row type” as seen in Trilobita, Xiphosura and Diplopoda represents the plesiomorphic developmental mode of eye formation from the euarthropod ground pattern whereas the “morphogenetic front type” is apomorphic for the Tetraconata. Our data are discussed with regard to two competing hypotheses on arthropod phylogeny, the “Tracheata” versus “Tetraconata” concept. The modes of eye development in Myriapoda is more parsimonious to explain in the Tetraconata hypothesis so that our data raise the possibility that myriapod eyes may not be secondarily reconstructed insect eyes as the prevailing hypothesis suggests.  相似文献   

14.
In embryos of clitellate annelids (i.e. oligochaetes and leeches), four ectodermal teloblasts (ectoteloblasts N, O, P and Q) are generated on either side through a stereotyped sequence of cell divisions of a proteloblast, NOPQ. The four ectoteloblasts assume distinct fates and produce bandlets of smaller progeny cells, which join together to form an ectodermal germ band. The pattern of the germ band, with respect to the ventrodorsal order of the bandlets, has been highly preserved in clitellate annelids. We show that specification of ectoteloblast lineages in the oligochaete annelid Tubifex involves cell interaction networks distinct from those in leeches. Cell ablation experiments have shown that fates of teloblasts N, P and Q in Tubifex embryos are determined rigidly as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted to the O fate through an inductive signal emanating from the P lineage. In the absence of this signal, the O lineage assumes the P fate. These results differ significantly from those obtained in embryos of the leech Helobdella, suggesting the diversity of patterning mechanisms that give rise to germ bands with similar morphological pattern.  相似文献   

15.
The trochophora concept and the literature on cleavage patterns and differentiation of ectodermal structures in annelids ("polychaetes") and molluscs are reviewed. The early development shows some variation within both phyla, and the cephalopods have a highly modified development. Nevertheless, there are conspicuous similarities between the early development of the two phyla, related to the highly conserved spiral cleavage pattern. Apical and cerebral ganglia have almost identical origin in the two phyla, and the cell-lineage of the prototroch is identical, except for minor variations between species. The cell-lineage of the metatrochs is almost unknown, but the telotroch of annelids and the "telotroch" of the gastropod Patella originate from the 2d-cell, as does the gastrotroch in the few species which have been studied. The segmented annelid body, i.e. the region behind the peristome, develops through addition of new ectoderm from a ring of 2d-cells just in front of the telotroch. This whole region is thus derived from 2d-cells. Conversely, the mollusc body is covered by descendants of cells from both the C and D quadrants and a growth zone is not apparent. This supports the notion that the molluscs are not segmented like the annelids, and that the repeated structures seen in polyplacophorans and monoplacophorans do not represent a segmentation homologous to that of the annelids.  相似文献   

16.
Despite a high degree of homonomy in the segmental organization of the ectoderm, the body plan of the leech is divided into two zones based on the distinct cell lineage patterns that give rise to the O/P portion of the segmental ectoderm. In the midbody and caudal segments, each segmental repeat of ectoderm arises in part from one 'o' blast cell and one 'p' blast cell. These two blast cells are positionally specified to distinct O and P fates, and give rise to differentiated descendant cells called O and P pattern elements, respectively. In the rostral segments, each segmental repeat of O and P pattern elements arises from a single 'op' blast cell. Based on their developmental fates and their responses to the ablation of neighboring cells, the granddaughters of the primary op blast cell are categorized into two O-type cells and two P-type cells. The O-type cells do not require the presence of the rest of the op blast cell clone for their normal development. By contrast, normal development of the P-type cells depends upon interactions with the other OP sublineages. Additional experiments showed that the O-type cells are the source of a repressive signal involved in the normal fate specification of the P-type cells. Our data suggest that the cell interactions involved in fate specification differ substantially in the rostral and midbody segments, even though the set of differentiated descendants produced by the rostral OP pathway and the midbody O and P pathways are very similar.  相似文献   

17.
In the presence of spermine tropomyosin forms sheets having two-dimensional crystallinity and tactoids. The most common form of sheet has cmm symmetry with a = 80 nm and b = 5 nm. The structure of this sheet has been solved in projection to a nominal resolution of 1.5 nm by combining data from electron diffraction and electron microscopy. Analysis of this pattern and that of rarely observed sheets having p2 symmetry (a = 40 nm, b = 5 nm and γ = 80 °) indicated that the cmm structure was formed by superposition of two p2 sheets. The tropomyosin molecules in each p2 sheet were arranged in rows directed along the p2 (0, 1) lattice lines, with all the molecules in one row having the same polarity and lying antiparallel to the molecules in adjacent rows. These rows associated in pairs, possibly by the supercoiling of the molecules in one row about those in the neighbouring row.  相似文献   

18.
The morphology and main ontogenetic traits of a new stichotrich ciliate, Saudithrix terricola Foissner, AL-Rasheid and Berger n. gen., n. sp., from a terrestrial habitat in Saudi Arabia were investigated using live observation, protargol impregnation, and scanning electron microscopy. Saudithrix terricola is characterized by a large (200-350 x 70-150 microm), flexible body; an adoral zone formed like a three-quarter circle; a sickle-shaped buccal lip with a widened paroral forming a cyrtohymenid pattern with the endoral; 11 frontal and frontal-ventral cirral rows (including right marginal rows) and one left marginal row covering the ventral side; two buccal cirri; six to nine transverse cirri; three dorsal kineties; and two macronuclear nodules. The resting cyst is about 85 microm across, has a smooth wall, and a fluffy mucous layer. Most cirral anlagen originate within the parental rows and are arranged side by side, the proximal portion of the adoral zone of membranelles is reorganized, and some parental dorsal bristles are maintained. Neither the morphological nor the ontogenetic data reveal the systematic position of Saudithrix within the stichotrichs. The term multicorona is introduced and describes a frontal ciliature composed of four or more cirral bows.  相似文献   

19.
The external morphology of limb development in Orchestia cavimana is examined by scanning electron microscopy and fluorescence staining from the appearance of the first limb buds until hatching. As other amphipods, O. cavimana undergoes direct development and the degree of segmental differentiation shows a more or less continual decrease in anteroposterior direction. Limbs form ventrally as small buds, which elongate and divide into podomeres early in development. This early subdivision largely corresponds with the limb segmentation of the hatchling. When the post-naupliar limbs start to develop, the germ band begins to split into two halves along the midline, so that the trunk limbs transiently occupy a very dorsolateral position. After the germ band has closed again, the differentiation into the characteristic amphipodan tagmata (cephalothorax, pereon, pleon) takes place and the limb podomeres lose their round-shape. The late embryo is covered by a so-called intermediate cuticle, which is formed after an embryonic moult and shed after hatching. The early development of O. cavimana reveals the Anlage of a vestigial seventh pleonic segment that is assumed to belong to the ground pattern of malacostracans, but is retained as a free, limbless segment only in adult Leptostraca. A transient subdivision of the proximal segment of the pleopods suggests the occurrence of a coxa and a basis in these limbs. The mandible attains its upright, adult position via a characteristic bending process that is strikingly similar to that in Archaeognatha (Insecta).  相似文献   

20.
Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号