首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Based on a simulation model of the structure of and distribution of O2 within infected cells of soybean nodules, gradients of concentration of dissolved O2 ([O2]) have been calculated within and between symbiosomes embedded in host cytoplasm, through which the flux of O2 to the symbiosomes is facilitated by leghaemoglobin. As a consequence of facilitation, gradients of [O2] in cytoplasm between symbiosomes are very small. Within symbiosomes, from which leghaemoglobin is considered to be absent, respiration by bacteroids generates steeper gradients of [O2], thus restricting respiration and N2 fixation. However, if bacteroid mass is considered to be randomly distributed within a symbiosome, about 80% of this mass lies within about 0.6 m of the surface (the peribacteroid membrane). Consequently, respiration within a symbiosome was calculated to be between 65% and 92% of that attained if bacteroids were directly in contact with the cytoplasm. For N2 fixation, the corresponding values were 44% to 91%. In cytoplasm, near the surface of a symbiosome, there is a boundary layer in which equilibrium between O2, leghaemoglobin and oxyleghaemoglobin is perturbed by O2 consumption within. Calculations of the thickness of the boundary layers gave values of only 3.65 to 3.75×10–9 m, thus they had little effect on calculated gradients of [O2] in cytoplasm. In contrast, perturbations of the leghaemoglobin oxygenation equilibrium affected layers of cytoplasm beneath intercellular spaces to a depth of 0.15 to 0.3×10–6 m in the physiological range of volume average [O2]. This affected gradients of [O2] in the cytoplasm near intercellular spaces. Revisions have been made to the model cell, incorporating these new calculations. Results suggest that infected nodule cells may be able to withstand 1–2 M O2 in the outermost layers of cytoplasm without inhibition of N2 fixation caused by excessive O2 within the symbiosomes.Abbreviations Lb leghaemoglobin - LbO2 oxyleghaemoglobin - [O2] concentration of free, dissolved O2 - Y fractional oxygenation of Lb - Y av volume averagedY  相似文献   

2.
F. J. Bergersen 《Protoplasma》1994,183(1-4):49-61
Summary A simulation model is presented for the distribution and consumption of O2 in infected cells of soybean root nodule central tissue. It differs from earlier models in closer adherence to observed structure and embodies new morphometric data about the distribution of > 12,000 mitochondria per cell and about the geometry of the gas-filled intercellular spaces near which the mitochondria are located. The model cell is a rhombic dodecahedron and O2 enters only through interfaces (totalling 26% of the cell surface) with 24 gas-filled intercellular spaces. These spaces are located at the edges of each rhombic face of the cell, forming an interconnected network over the cell suface. Next, O2 is distributed through the cytoplasm by a leghaemoglobin-facilitated diffusive process, initially between the mitochondria and amyloplasts in the outer layers of the cell and then between > 6,000 symbiosomes (each containing 6 bacteroids) towards the central nucleus. The symbiosomes and mitochondria consume O2, but impede its diffusion; all O2 entering symbiosomes is considered to be consumed there. For the calculations, the cell is considered to consist of 24 structural units, each beneath one of the intercellular spaces, and each is divided into 126 layers, 0.2 m thick, in and through which O2 is consumed and diffused. Rates of consumption of O2 and of N2 fixation in each diffusion layer were calculated from previously-established kinetics of respiration by mitochondria and bacteroids isolated from soybean nodules and from established relationships between bacteroid respiration and N2 fixation. The effects of varying the O2-supply concentration and the concentration and type of energy-yielding substrates were included in the simulations. When the model cell was supplied with 0.5 mM malate, mitochondria accounted for a minimum of 50% of the respiration of the model cell and this percentage increased with increased concentration of the O2 supply. Gradients of concentrations of free O2 dissolved in the cytoplasm were steepest near the cell surface and in this location respiration by mitochondria appeared to exert a marked protective effect for nitrogen fixation in layers deeper within the cell. Estimates of N2 fixation per nodule, calculated from the model cell, were similar to those calculated from field measurements.Abbreviations Lb leghaemoglobin - LbO2 oxyleghaemoglobin - [O2] concentration of free, dissolved O2 - e.m. electron micrograph Dedicated to the memory of Professor John G. Torrey  相似文献   

3.
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen‐fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2‐fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH‐sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.  相似文献   

4.
1. Cell-free extracts prepared from soya-bean nodule bacteroids produced HD from D2 in the presence of dithionite, an ATP-generating system and nitrogen. 2. Crude extracts of bacteroids or of Azotobacter vinelandii showed some background D2 exchange when any one of these was omitted. 3. Partial purification of bacteroid extracts diminished this background activity and gave increased D2 exchange and nitrogen fixation. 4. Although increasing pN2 stimulated both reactions, the apparent Km (N2) for nitrogen fixation was much higher than the apparent Km (N2) for D2 exchange when partially purified bacteroid extracts were used. 5. Carbon monoxide was a competitive inhibitor of nitrogen fixation by partially purified bacteroid extracts, but D2 exchange was inhibited in a non-competitive fashion. 6. These results are discussed in relation to the possible existence of enzyme-bound intermediates of nitrogen fixation.  相似文献   

5.
During early development (up to 18 d after sowing) of nodules of an effective cowpea symbiosis (Vigna unguiculata (L.) Walp cv. Vita 3: Rhizobium strain CB756), rapidly increasing nitrogenase (EC 1.7.99.2) activity and leghaemoglobin content were accompanied by rapid increases in activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), enzymes of denovo purine synthesis (forming inosine monophosphate) xanthine oxidoreductase (EC 1.2.3.2), urate oxidase (EC 1.7.3.3), phosphoenolpyruvate carboxylase (EC 4.1.1.31) and led to increased export of ureides (allantoin and allantoic acid) to the shoot of the host plant in the xylem. Culturing plants with the nodulated root systems maintained in the absence of N2 (in 80 Ar: 20 O2, v/v) had little effect on the rates of induction and increase in nitrogenase activity and leghaemoglobin content but, in the absence of N2 fixation and consequent ammonia production by bacteroids, there was no stimulation of activity of enzymes of ammonia assimilation or of the synthesis of purines or ureides. Addition of NO 3 - (0.1–0.2 mM) relieved host-plant nitrogen deficiency caused by the Ar: O2 treatment but failed to increase levels of enzymes of N metabolism in either the bacteroid or the plant-cell fractions of the nodule. Premature senescence in Ar: O2-grown nodules occurred at 18–20 d after sowing, and resulted in reduced levels of nitrogenase activity and leghaemoglobin but increased the activity of hydroxybutyrate oxidoreductase (EC 1.1.1.30).  相似文献   

6.
Cowpea (Vigna unguiculata (L.) Walp cv. Vita 3) seedlings inoculated with Rhizobium strain CB756 were cultured with their root systems maintained in air or in Ar: O2 (80:20, v/v) during early nodule development (up to 24 d after sowing). Compared with those in air, seedlings in Ar:O2 showed progressive N deficiency with inhibited shoot growth, reduced ribulose-1,5-bisphosphate carboxylase and total protein levels and loss of chlorophyll in the leaves. Nodule initiation, differentiation of infected and uninfected nodule tissues and the ultrastructure of bacteriod-containing cells were similar in the air and Ar: O2 treatments up to 16 d after sowing. Thereafter the Ar: O2 treatment caused cessation of growth and development of nodules, reduced protein levels in bacteroids and nodule plant cells, and progressive degeneration of nodule ultrastructure leading to premature senescence of these organs. Provision of NO 3 - (0.1–0.2 mM) to Ar: O2-grown seedlings overcame the abovementioned consequences of N2 deficiency on nodule and plant growth, but merely delayed the degenerative effects of Ar: O2 treatment on nodule structure and senescence. Treatment of Ar: O2-grown seedlings with NO 3 - greatly increased the protein level of nodules but the increase was largely restricted to the plant cell fraction as opposed to the bacteroids. By contrast, NO 3 - treatment of air-grown seedlings increased protein of bacteroid and host nodule fractions to the same relative extents when compared with air-grown plants not supplemented with NO 3 - . These findings, taken together with studies of the distribution of N in nodules of symbiotically effective plants grown from 15N-labeled seed, indicate that direct incorporation of fixation products by bacteroids may be a critical feature in the establishment and continued growth of an effective symbiosis in the cowpea seedling.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase  相似文献   

7.
Increased biomass and yield of plants grown under elevated [CO2] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2], provided N2 fixation is stimulated by elevated [CO2] in line with growth and yield. In Mediterranean‐type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2] (ambient ~400 ppm and elevated ~550 ppm) levels in a free‐air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2] depressed grain [N] (?4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2], as a consequence of greater post‐flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2] is high as long as there is enough soil water to continue N2 fixation during grain filling.  相似文献   

8.
Summary A vesicular intracytoplasmic membrane system is demonstrated in bacteroids from the leghaemoglobin filled zone of effective Trifolium subterraneum nodules after KMnO4 and OsO4 fixation. The system appears to be present in all mature bacteroids from this zone, and is derived from tubular invaginations of the plasma membrane of the bacteriod. A granular substance similar to the bacteroid cytoplasm is found in the vesicles which are bounded by a tripartite membrane approximately 80 Å wide, while the interspace between the vesicles is filled with a material of similar appearance to that in the interspace between bacteroid plasma membrane and cell wall.  相似文献   

9.
Summary A series of investigations were conducted with the objective of elucidating natural pathways of electron transport from respiratory processes to the site of N2 fixation in nodule bacteroids. A survey of dehydrogenase activities in a crude extract of soybean nodule bacteroids revealed relatively high activities of NAD-specific β-hydroxybutyrate and glyceraldehyde-3-phosphate dehydrogenases. Moderate activities of NADP-specific isocitrate and glucose-6-phosphate dehydrogenases were observed. By use of the ATP-dependent acetylene reduction reaction catalyzed by soybean bacteroid nitrogenase, and enzymes and cofactors from bacteroids and other sources, the following sequences of electron transport to bacteroid nitrogenase were demonstrated: (1) H2 to bacteroid nitrogenase in presence of a nitrogenase-free extract ofC. pasteurianum; (2) β-hydroxybutyrate to bacteroid nitrogenase in a reaction containing β-hydroxybutyrate dehydrogenase, NADH dehydrogenase, NAD and benzyl viologen; (3) β-hydroxybutyrate dehydrogenase, to nitrogenase in reaction containing NADH dehydrogenase, NAD and either FMN or FAD; (4) light-dependent transfer of electrons from ascorbate to bacteroid nitrogenase in a reaction containing photosystem I from spinach chloroplasts, 2,6-dichlorophenolindophenol, and either azotoflavin from Azotobacter or non-heme iron protein from bacteroids; (5) glucose-6-phosphate to bacteroid nitrogenase in a system that included glucose-6-phosphate dehydrogenase, NADP, NADP-ferredoxin reductase from spinach, azotoflavin from Azotobacter and bacteroid non-heme iron protein. The electron transport factors, azotoflavin and bacteroid non-heme iron protein, failed to function in the transfer of electrons from an NADH-generating system to bacteroid nitrogenase. When FMN or FAD were added to systems containing azotoflavin and bacteroid non-heme iron protein, electrons apparently were transferred to the flavin-nucleotides and then nitrogenase without involvement of azotoflavin and bacteroid non-heme iron protein. Evidence is available indicating that nodule bacteroids contain flavoproteins analogous to Azotobacter, azotoflavin, and spinach ferredoxin-NADP reductase. It is concluded that physiologically important systems involved in transport of electrons from dehydrogenases to nitrogenase in bacteroids very likely will include relatively specific electron transport proteins such as bacteroid non-heme iron protein and a flavoprotein from bacteroids that is analogous to azotoflavin.  相似文献   

10.
On feeding 14CO2 to the shoots of lupine (25 mCi per plant) 30 min was the minimal time needed to determine the incorporation of label into bacteroid compounds. The predominant incorporation, exhibited in all root, nodule and bacteroid samples after 30 min exposure, was into sucrose (45–90% of the corresponding fraction radioactivity) of the neutral fraction; into malate (30–40%) of the acid fraction; into aspartic acid and asparagine (60–80% in sum) of the basic fraction. The composition of carbon compounds containing the greatest amount of 14C in the cytosol of nodules and in bacteroids was similar. Their radioactivity after 30 min exposure was for bacteroids (nCi per g of bacteroid fr. wt): sucrose 5.73, glucose 1.00, malate 0.15, succinate 0.11; for the nodule cytosol (nCi per g of nodule fr. wt): sucrose 200.00, glucose 8.40, malate 9.34, succinate 8.50. Thus it was demonstrated that in lupine, sucrose is the main photoassimilate entering not only into nodules but also into bacteroids. The biosynthesis of aspartic acid and asparagine occurs during nitrogen fixation in bacteroids.  相似文献   

11.
A simulation model incorporating structural, biochemical andphysiological features of root nodules of soyabean is described.The simulation is used to examine the effects of varying thelocation and kinetics of leghaemoglobin within infected cells.A striking feature is the capacity of the simulated nodule tomaintain its activity in the face of these changes, in spiteof relatively large changes in concentrations of free O2, andleghaemoglobin oxygenation with the cells. These propertiesarise from the diffusion resistance and intracellular demandfor O2, due to the respiratory activities of the bacteroids. Nitrogen fixation, diffusion, oxygen, model  相似文献   

12.
Jongruaysup  S.  O'Hara  G. W.  Dell  B.  Bell  R. W. 《Plant and Soil》1993,(1):345-348
In legumes, both increases and decreases in nodule number in response to Mo deficiency have been reported, but reasons for the different responses have not been proposed. The present study examined nodule initiation and development in black gram seedlings using two levels of seed Mo to induce Mo deficiency. In the first 11 days after inoculation, low levels of Mo in seed had no effect on nodule initiation or the number of nodules. At 13 days after inoculation, low Mo in seed depressed bacteroid concentration, leghaemoglobin concentration, nodule number and nodule fresh weight. Acetylene reduction activity was delayed by 2 days in plants grown from low Mo seed. We suggest that the delay in N2 fixation in plants grown from low Mo seed was due to slower incorporation of Mo of soil origin into nitrogenase. We further suggest that restricted supply of essential metabolites to the nodules on plants from low Mo seed resulted in the slower maturation of early initiated nodules and the repression of formation of new nodules.  相似文献   

13.
A derivative of Rhizobium japonicum (strain 122 DES) has been isolated which forms nodules on soybeans that evolve little or no H2 in air and efficiently fixes N2. Bacteroids isolated from nodules formed by strain 122 DES took up H2 with O2 as the physiological acceptor and appeared to be typical of those R. japonicum strains that possess the H2 uptake system. The hydrogenase system in soybean nodules is located within the bacteroids and activity in macerated bacteroids is concentrated in a particulate fraction. The pH optimum for the reaction is near 8.0 and apparent K m values for H2 and O2 are 2 M and 1 M, respectively. The H2 oxidizing activity of a suspension of 122 DES bacteroids was stable at 4°C for at least 4 weeks and was not particularly sensitive to O2. Neither C2H2 nor CO inhibited O2 dependent H2 uptake activity.Non-physiological electron acceptors of positive oxidation reduction potential also supported H2 uptake by bacteroids. The rate of H2 uptake with phenazine methosulfate as the acceptor was greater than that with O2. When methylene blue, triphenyltetrazolium, potassium ferricyanide or dichlorophenolindophenol were added to bacteriod suspensions, without preincubation, rates of H2 uptake were supported that were lower than those in the presence of O2. Preincubation of the bacteroids with acceptors increased the rates of H2 uptake. No H2 evolution was observed from reaction mixtures containing bacteroid suspensions and reduced methyl or benzyl viologens. Of a series of carbon substrates added to bacteroid suspensions only acetate, formate or succinate at concentrations of 50 mM resulted in 20% or greater inhibition of H2 oxidation.The H2 uptake capacity of isolated 122 DES bacteroids (expressed on a dry bacteroid basis) was at least 10-fold higher than the rate of the nitrogenase reaction in nodules expressed on a comparable basis. Since about 1 mol of H2 is evolved for every mol of N2 reduced during the N2 fixation reaction, these observations explain why soybean nodules formed by strain 122 DES and other strains with high H2 uptake activities have a capacity for recycling all the H2 produced from the nitrogenase reaction.Abbreviations PMS PHenazine methosulfate - MB Methylene blue  相似文献   

14.
The effects of purified oxyleghaemoglobin components added toa suspension of bacteroids from soybean and pea root noduleprepared anaerobically were studied in terms of nitrogen fixationand oxygen consumption. Soybean leghaemoglobin components (Lba and Lb c) and pea leghaemoglobin components (Lb I and Lb IV)have different O2-binding affinities. Lb a and Lb IV showedhigher O2-binding affinities than Lb c and Lb I. When anaerobicallyprepared bacteroids were incubated with these leghaemoglobincomponents separately under low oxygen tension and in the presenceof a reduction system, Lb a and Lb IV were more effective forboth nitrogen fixation and oxygen consumption than Lb c andLb I. These results suggest that leghaemoglobin components participatein more effective nitrogen fixation by controlling oxygen transportto bacteroids. (Received July 7, 1981; Accepted November 2, 1981)  相似文献   

15.
A simulation of a normally functioning soyabean nodule, witha variable gaseous diffusion barrier in the inner cortex, hasbeen used to calculate rates of nitrogen fixation and the concentrationsof O2, CO2, H2 and N2 at various tissue locations, in responseto variations in diffusion-resistance and external O2 concentration. A small diffusion-resistance allowed increased nitrogen fixationin air, but lead to diminished rates at increased external O2concentrations. Large diffusion-resistances provide increasedprotection against the effects of high O2 concentrations butdiminish nitrogen fixation in air. These effects depend on therespiratory activity (Vmax) of the bacteroids. In general, efficiency(moles of N3 fixed/moles of O2 used) is affected more than N2fixation rates at increased external O2 concentrations. As a result of differential fluxes and solubilities of the gasesinvolved in nitrogen fixation, significant negative pressuredifferences (about 24 kPa in air) would be generated betweenthe outer cortex and the nodule central tissues, provided thatthe structure is sufficiently inflexible, and the central tissueis isolated from undue influences of water and gas. The calculations also show that the concentrations of H2 nearthe bacteroids remain low (2–3 per cent of concentrationsof dissolved N2) and are thus unlikely to inhibit N2 fixationexcept at high values of the diffusion resistance. Nitrogen fixation, diffusion, pressure  相似文献   

16.
The effect of nitrate on N2 fixation and the assimilation of fixed N2 in legume nodules was investigated by supplying nitrate to well established soybean (Glycine max L. Merr. cv Bragg)-Rhizobium japonicum (strain 3I1b110) symbioses. Three different techniques, acetylene reduction, 15N2 fixation and relative abundance of ureides ([ureides/(ureides + nitrate + α-amino nitrogen)] × 100) in xylem exudate, gave similar results for the effect of nitrate on N2 fixation by nodulated roots. After 2 days of treatment with 10 millimolar nitrate, acetylene reduction by nodulated roots was inhibited by 48% but there was no effect on either acetylene reduction by isolated bacteroids or in vitro activity of nodule cytoplasmic glutamine synthetase, glutamine oxoglutarate aminotransferase, xanthine dehydrogenase, uricase, or allantoinase. After 7 days, acetylene reduction by isolated bacteroids was almost completely inhibited but, except for glutamine oxoglutarate aminotransferase, there was still no effect on the nodule cytoplasmic enzymes. It was concluded that, when nitrate is supplied to an established symbiosis, inhibition of nodulated root N2 fixation precedes the loss of the potential of bacteroids to fix N2. This in turn precedes the loss of the potential of nodules to assimilate fixed N2.  相似文献   

17.
Plants of Glycine max var. Caloria, infected as 14 d old seedlings with a defined titre of Rhizobium japonicum 3Il b85 in a 10 min inoculation test, develop a sharp maximum of nitrogenase activity between 17 and 25 d after infection. This maximum (14±3 nmol C2H4 h-1 mg nodule fresh weight-1), expressed as per mg nodule or per plant is followed by a 15 d period of reduced nitrogen fixation (20–30% of peak activity). 11 d after infection the first bacteroids develop as single cells inside infection vacuoles in the plant cells, close to the cell wall and infection threads. As a cytological marker for peak multiplication of bacteroids and for peak N2-fixation a few days later the association of a special type of nodule mitochondria with amyloplasts is described. 20 d after inoculation, more than 80% of the volume of infected plant cells is occupied by infection vacuoles, mostly containing only one bacteroid. The storage of poly--hydroxybutyrate starts to accumulate at both ends of the bacteroids. Non infected plant cells are squeezed between infected cells (25d), with infection vacuoles containing now more than two (up to five) bacteroids per section. Bacteroid development including a membrane envelope is also observed in the intercellular space between plant cells. 35 d after infection, more than 50% of the bacteroid volume is occupied by poly--hydroxybutyrate. The ultrastructural differentiation is discussed in relation to some enzymatic data in bacteroids and plant cell cytoplasm during nodule development.  相似文献   

18.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

19.
Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygenlimited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development. Referee: Dr. Robert Ludwig, Department of Molecular, Celluar, and Developmental Biology, Sinheimer Laboratories, University of California, Santa Cruz, CA 95064  相似文献   

20.
Hydrogen evolution from root nodules has been reported to make N2 fixation by some legume-Rhizobium symbiotic systems inefficient. We have surveyed the extent of H2 evolution and estimated relative efficiencies of nodules of Austrian winter peas formed by 15 strains of R. leguminosarum. Their rates of H2 evolution in air were about 30% of the rates of H2 evolution under an atmosphere in which N2 was replaced by Ar. Relative efficiency values based on C2H2 reduction rates ranged from 0.55 to 0.80. With some of the strains, hydrogenase activities were demonstrated in intact nodules and in bacteroids, but the levels of activity were insufficient to recycle all the H2 evolved by the nitrogenase system. In both intact nodules and bacteroids the hydrogenase is less sensitive to O2 damage than the nitrogenase system, so H2 uptake capacity was observed in intact nodules by suppressing the nitrogenase-dependent H2 evolution with an atmosphere containing a high O2 concentration, and in bacteroids by using aerobically prepared bacteroid suspensions. The hydrogenase activity of both was dependent on O2 consumption. A K mfor H2 of near 4 M was determined in suspension of bacteroids from nodules formed by strains 128C53 and 128C56.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号