共查询到20条相似文献,搜索用时 11 毫秒
1.
Joel S. Karliner 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(1):203-212
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)‐mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. 相似文献
2.
Schmid G Guba M Ischenko I Papyan A Joka M Schrepfer S Bruns CJ Jauch KW Heeschen C Graeb C 《Journal of cellular biochemistry》2007,101(1):259-270
FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development. 相似文献
3.
Involvement of vacuolar H+‐ATPase in killing of human melanoma cells by the sphingosine kinase analogue FTY720 下载免费PDF全文
Kwang Hong Tay Xiaoying Liu Mengna Chi Lei Jin Chen Chen Jiang Su Tang Guo Nicole M. Verrills Hsin‐Yi Tseng Xu Dong Zhang 《Pigment cell & melanoma research》2015,28(2):171-183
Targeting the sphingosine 1‐phosphate (S1P)/S1P receptor (S1PR) signalling axis is emerging as a promising strategy in the treatment of cancer. However, the effect of such an approach on survival of human melanoma cells remains less understood. Here, we show that the sphingosine analogue FTY720 that functionally antagonises S1PRs kills human melanoma cells through a mechanism involving the vacuolar H+‐ATPase activity. Moreover, we demonstrate that FTY720‐triggered cell death is characterized by features of necrosis and is not dependent on receptor‐interacting protein kinase 1 or lysosome cathepsins, nor was it associated with the activation of protein phosphatase 2A. Instead, it is mediated by increased production of reactive oxygen species and is antagonized by activation of autophagy. Collectively, these results suggest that FTY720 and its analogues are promising candidates for further development as new therapeutic agents in the treatment of melanoma. 相似文献
4.
Yamanaka M Anada Y Igarashi Y Kihara A 《Biochemical and biophysical research communications》2008,375(4):675-679
The sphingolipid metabolite sphingosine 1-phosphate (S1P) plays an essential function in the egress of T cells from the thymus and secondary lymphoid organs. The novel immunomodulating agent FTY720 is phosphorylated in vivo to the functional form FTY720 phosphate (FTY720-P), which is structurally similar to S1P. FTY720-P inhibits the S1P-mediated T cell egress as an agonist of S1P receptors. FTY720-P is not stable in plasma and is dephosphorylated to FTY720. In the present study, we investigated activities toward FTY720-P of LPP family members (LPP1, LPP1a, LPP2, and LPP3), which exhibit broad substrate specificity. Of the four, LPP1a, the splicing isoform of LPP1, had the highest activity toward FTY720-P, and the highest affinity. Among blood-facing cells tested, only endothelial cells displayed high phosphatase activity for FTY720-P. Significant levels of LPP1a expression were found in endothelial cells, suggesting that LPP1a is important for the dephosphorylation of FTY720-P in plasma. 相似文献
5.
Valentine WJ Godwin VI Osborne DA Liu J Fujiwara Y Van Brocklyn J Bittman R Parrill AL Tigyi G 《The Journal of biological chemistry》2011,286(35):30513-30525
FTY720 phosphate (FTY720P) is a high potency agonist for all the endothelial differentiation gene family sphingosine 1-phosphate (S1P) receptors except S1P receptor subtype 2 (S1P(2)). To map the distinguishing features of S1P(2) ligand recognition, we applied a computational modeling-guided mutagenesis strategy that was based on the high degree of sequence homology between S1P(1) and S1P(2). S1P(2) point mutants of the ligand-binding pocket were characterized. The head group-interacting residues Arg3.28, Glu3.29, and Lys7.34 were essential for activation. Mutation of residues Ala3.32, Leu3.36, Val5.41, Phe6.44, Trp6.48, Ser7.42, and Ser7.46, predicted to interact with the S1P hydrophobic tail, impaired activation by S1P. Replacing individual or multiple residues in the ligand-binding pocket of S1P(2) with S1P(1) sequence did not impart activation by FTY720P. Chimeric S1P(1)/S1P(2) receptors were generated and characterized for activation by S1P or FTY720P. The S1P(2) chimera with S1P(1) sequence from the N terminus to transmembrane domain 2 (TM2) was activated by FTY720P, and the S1P(2)(IC1-TM2)(S1P1) domain insertion chimera showed S1P(1)-like activation. Twelve residues in this domain, distributed in four motifs a-d, differ between S1P(1) and S1P(2). Insertion of (78)RPMYY in motif b alone or simultaneous swapping of five other residues in motifs c and d from S1P(1) into S1P(2) introduced FTY720P responsiveness. Molecular dynamics calculations indicate that FTY720P binding selectivity is a function of the entropic contribution to the binding free energy rather than enthalpic contributions and that preferred agonists retain substantial flexibility when bound. After exposure to FTY720P, the S1P(2)(IC1-TM2)(S1P1) receptor recycled to the plasma membrane, indicating that additional structural elements are required for the selective degradative trafficking of S1P(1). 相似文献
6.
Coste O Pierre S Marian C Brenneis C Angioni C Schmidt H Popp L Geisslinger G Scholich K 《Journal of cellular and molecular medicine》2008,12(3):995-1004
FTY720 is a novel immunosuppressive drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. In its phosphorylated form FTY720 is a potent S1P receptor agonist. Recently it was also shown that FTY720 can reduce prostaglandin synthesis through the direct inhibition of the cytosolic phospholipase A2 (cPLA2). Since prostaglandins are important mediators of nociception, we studied the effects of FTY720 in different models of nociception. We found that intraperitoneal administration of FTY720 reduced dose-dependently the nociceptive behaviour of rats in the formalin assay. Although the antinociceptive doses of FTY720 were too low to alter the lymphocyte count, prostanoid concentrations in the plasma were dramatically reduced. Surprisingly, intrathecally administered FTY720 reduced the nociceptive behaviour in the formalin assay without altering spinal prostaglandin synthesis, indicating that additional antinociceptive mechanisms beside the inhibition of prostaglandin synthesis are involved. Accordingly, FTY720 reduced also the nociceptive behaviour in the spared nerve injury model for neuropathic pain which does not depend on prostaglandin synthesis. In this model the antinociceptive effect of FTY720 was similar to gabapentin, a commonly used drug to treat neuropathic pain. Taken together we show for the first time that FTY720 possesses antinociceptive properties and that FTY720 reduces nociceptive behaviour during neuropathic pain. 相似文献
7.
Yu Hisano久 野悠 Naoki Kobayashi小 林直木 Atsuo Kawahara川 原敦雄 Akihito Yamaguchi山 口明人 Tsuyoshi Nishi西 毅 《The Journal of biological chemistry》2011,286(3):1758-1766
FTY720 is a novel immunomodulating drug that can be phosphorylated inside cells; its phosphorylated form, FTY720-P, binds to a sphingosine 1-phosphate (S1P) receptor, S1P1, and inhibits lymphocyte egress into the circulating blood. Although the importance of its pharmacological action has been well recognized, little is known about how FTY720-P is released from cells after its phosphorylation inside cells. Previously, we showed that zebrafish Spns2 can act as an S1P exporter from cells and is essential for zebrafish heart formation. Here, we demonstrate that human SPNS2 can transport several S1P analogues, including FTY720-P. Moreover, FTY720-P is transported by SPNS2 through the same pathway as S1P. This is the first identification of an FTY720-P transporter in cells; this finding is important for understanding FTY720 metabolism. 相似文献
8.
9.
Xinggang Wang Minghui Li Ying Yu Guijian Liu Yong Yu Yunzeng Zou Junbo Ge Ruizhen Chen 《Journal of cellular physiology》2019,234(10):18029-18040
Fingolimod (FTY720) after phosphorylation, as the ligand of sphingosine 1-phosphate receptors (S1PRs), plays an important role in cell proliferation and differentiation. In this article, FTY720 in the treatment of coxsackievirus B3 (CVB3)-induced viral myocarditis was closely related to apoptosis and AKT/caspase-3 apoptotic pathways. We found that CVB3 inhibited myocardial apoptosis at the early stage with upregulating p-AKT level and downregulating activated caspase-3 level for replication of virus progeny, whereas it promoted apoptosis at a late stage with downregulating p-AKT and upregulating activated caspase-3 for releasing the newly synthesized virus to spread. Interestingly, FTY720 could reverse this trend; it promoted apoptosis at an early stage and inhibited apoptosis at the late stage in vivo and vitro, which proved the antiviral effect. We also found that S1PR1, S1PR4, and S1PR5, rather than S1PR2 and S1PR3, were regulated by FTY720 in this process. The results confirmed that FTY720 alleviates CVB3-induced myocarditis and inhibits viral replication through regulating S1PRs and AKT/caspase-3 pathways with a bidirectional regulation of apoptosis. 相似文献
10.
The tyrosine kinase domain (TKD) mutations of receptor tyrosine kinase C-KIT are associated with a poor prognosis in acute myeloid leukemia (AML). However, the underlying mechanisms are not fully understood. We found the activity of protein phosphatase 2A (PP2A), a human tumor suppressor whose dysfunction contributes to malignant cell behavior, was significantly decreased in AML subgroups harboring C-KIT/D816V and AML cell line Kasumi-1 bearing C-KIT/N822K mutation. Primary AML cells and various AML cell lines were treated with PP2A activator FTY720. FTY720 showed a toxic effect in all leukemic cells, especially for cells harboring C-KIT/TKD mutation. Furthermore, FTY720-induced toxicity in AML leukemic cells was mediated by restoration of PP2A activity, via down-regulation of PP2A inhibitor SET, dephosporylation of PP2A-C(TYR307), and up-regulation of relevant PP2A subunit A and B55α. Our research indicates that the decreased PP2A activity in AML harboring C-KIT/TKD mutation may make the restoration of PP2A activity a novel therapy for AML patients with C-KIT/TKD mutation. 相似文献
11.
Sathya Narayanan Patmanathan Lee Fah Yap Paul G. Murray Ian C. Paterson 《Journal of cellular and molecular medicine》2015,19(10):2329-2340
Almost all drugs approved for use in humans possess potentially beneficial ‘off‐target’ effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re‐purposing FTY720 (also known as fingolimod, Gilenya?), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1‐phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer‐associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti‐cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer‐related cellular processes, and discuss its potential use as an anti‐cancer drug. 相似文献
12.
Vessey DA Li L Kelley M Zhang J Karliner JS 《Journal of biochemical and molecular toxicology》2008,22(2):113-118
Consistent with previous reports, sphingosine at a high concentration (5 microM) was cardiotoxic as evidenced by increased infarct size in response to ischemia/reperfusion in an ex vivo rat heart. Sphingosine 1-phosphate (S1P) at 5 microM was cardioprotective. However, at a physiologic concentration (0.4 microM) sphingosine as well as S1P was effective in protecting the heart from ischemia/reperfusion injury both when perfused prior to 40 min of ischemia (preconditioning) or when added to reperfusion media following ischemia (postconditioning). Protection by sphingosine and S1P was evidenced with both pre- and post-conditioning by a >75% recovery of left ventricular developed pressure during reperfusion and a decrease in infarct size from 45% of the risk area to less than 8%. When VPC23019, an S1P(1and3)G-protein coupled receptor antagonist, was added to the preconditioning or postconditioning medium along with S1P, it completely blocked S1P-induced protection. However, VPC 23019 did not affect the ability of 0.4 microM sphingosine to either precondition or postcondition hearts. Studies of preconditioning revealed that inhibition of protein kinase C with GF109203X blocked preconditioning by S1P. However, GF109203X did not affect preconditioning by 0.4 microM sphingosine. Likewise, cotreatment with the PI3 kinase inhibitor wortmanin blocked preconditioning by S1P but not by sphingosine. By contrast, inhibition of protein kinase G with KT5823 had no effect on S1P preconditioning but completely eliminated preconditioning by sphingosine. Also, the protein kinase A inhibitory peptide 14-22 amide blocked preconditioning by sphingosine but not S1P. These data reveal for the first time that sphingosine is not toxic at physiologic concentrations but rather is a potent cardioprotectant that utilizes a completely different mechanism than S1P; one that is independent of G-protein coupled receptors and utilizes cyclic nucleotide-dependent pathways. 相似文献
13.
Zhang Z Zhang Z Fauser U Artelt M Burnet M Schluesener HJ 《Journal of cellular and molecular medicine》2007,11(2):307-314
FTY720 (Fingolimod) is a novel type of immunosuppressive agent inhibiting lymphocyte egress from secondary lymphoid tissues thereby causing peripheral lymphopenia. FTY720 can inhibit macrophage infiltration into inflammatory lesions under pathological conditions. FTY720 has been clinically evaluated for prophylaxis of allograft rejection and treatment of multiple sclerosis, showing promising immunosuppressive effects. A robust inflammatory response after traumatic brain injury (TBI) plays an important role in the secondary or delayed injuries of TBI. Here we have investigated by immunohistochemistry in a rat TBI model the effects of FTY720 on early cell accumulation into the inflammatory tissue response and on expression of major histo-compatibility complex class II (MHC-II) and endothelial-monocyte activating polypeptide II (EMAP-II). Accumulation of MHC-II(+) or EMAP-II(+) cells became significant 1 day after injury and continuously increased during the early time periods. Further, double-staining experiments confirmed that the major cellular sources of MHC-II were reactive macrophages, however MHC-II(+) cells only constituted a small subpopulation of reactive macrophages. Immediately after TBI, peripheral administration of FTY720 (1 mg/kg in 1 mL saline, every second day) significantly attenuated the accumulation of MHC-II(+) macrophages from Day 1 to 4 and significantly attenuated the accumulation of EMAP-II(+) macrophages/microglia at Day 4. Our findings show that FTY720 attenuates early accumulation of EMAP-II(+) and MHC-II(+) reactive monocytes following TBI, indicating that FTY720 might be a drug candidate to inhibit brain inflammatory reaction following TBI. 相似文献
14.
K. Alexa Orr Gandy Lina M. Obeid 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(1):157-166
Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell–cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [ and ]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the sphingosine kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. 相似文献
15.
16.
Bozena Czech Waltraud Pfeilschifter Niloufar Mazaheri-Omrani Timo Kahles Abdelhaq Rami Josef Pfeilschifter 《Biochemical and biophysical research communications》2009,389(2):251-217
Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1 mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion. 相似文献
17.
18.
The bioactive lipid molecule sphingosine 1-phosphate (S1P) binds to specific cell surface receptors and regulates several cellular processes. S1P is abundant in plasma, and physiologically its most important target cells are lymphocytes and vascular endothelial cells. S1P plays a pivotal role in the immune system by regulating lymphocyte egress from the thymus and secondary lymphoid organs. The immunomodulator FTY720 impairs this egress, causing lymphopenia. Platelets had long been considered to be the major source of plasma S1P, however recent studies revealed the importance of erythrocytes as a major supply. The sphingosine analog FTY720 is a prodrug, and FTY720 phosphate (FTY720-P) its functional form. Although both erythrocytes and platelets can produce S1P, only platelets synthesize and release FTY720-P. This review will focus on the recent advances in our understanding of the metabolism and release of S1P and FTY720-P, especially in platelets and erythrocytes. 相似文献
19.
20.
Monica Morris Rachael D. Aubert Katherine Butler Tara Henning James Mitchell Leecresia Jenkins David Garber Janet McNicholl Ellen N. Kersh 《Journal of medical primatology》2014,43(5):370-373
FTY720 has been shown to reduce inflammatory cytokines and immune cells in the genital mucosa of macaques. This pilot study examined the ability of FTY720 to inhibit HIV acquisition. Systemic treatment with FTY720 failed to prevent or delay vaginal SHIV transmission. 相似文献